Complete deficiency of a member of the type II transmembrane serine protease family, tmprss1 (also known as hepsin), is associated with severe to profound hearing loss in mice and a gross enlargement of the tectorial membrane in the cochlea. Levels of thyroxine in these mice have been shown to be significantly lower when compared with wild-type controls. As thyroxine is critical for inner ear development, we delivered thyroxine to these mice during the prenatal or postnatal stage of development. Both the treatments could not ameliorate hearing loss or correct deformities in the tectorial membrane of these mutant mice, suggesting that a deficiency in tmprss1 affects thyroxine responsiveness in the inner ear in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2950264PMC
http://dx.doi.org/10.1097/WNR.0b013e32833dbd2dDOI Listing

Publication Analysis

Top Keywords

inner ear
12
mutant mice
8
hearing loss
8
tectorial membrane
8
thyroxine mice
8
thyroxine
5
mice
5
thyroxine treatments
4
treatments correct
4
correct inner
4

Similar Publications

Background: Exposures to hazardous noise causes irreversible injury to the structures of the inner ear, leading to changes in hearing and balance function with strong links to age-related cognitive impairment. While the role of noise-induced hearing loss in long-term health consequences, such as progression or development of Alzheimer's Disease (AD) has been suggested, the underlying mechanisms and behavioral and cognitive outcomes or therapeutic solutions to mitigate these changes remain understudied. This study aimed to characterize the association between blast exposure, hearing loss, and the progression of AD pathology, and determine the underlying mechanisms.

View Article and Find Full Text PDF

Learning to hear again with alternating cochlear frequency allocations.

Sci Rep

January 2025

Department of ENT/Audiology & School for Mental Health and NeuroScience (MHENS), Maastricht University Medical Centre, Maastricht, The Netherlands.

Traditionally, the place-pitch 'tonotopically' organized auditory neural pathway was considered to be hard-wired. Cochlear implants restore hearing by arbitrarily mapping frequency-amplitude information. This study shows that recipients, after a long period of sound deprivation, preserve a level of auditory plasticity, enabling them to swiftly and concurrently learn speech understanding with two alternating, distinct frequency maps.

View Article and Find Full Text PDF

Hypoxia tolerance and its variation with temperature, activity, and body mass, are critical ecophysiological traits through which climate impacts marine ectotherms. To date, experimental determination of these traits is limited to a small subset of modern species. We leverage the close coupling of carbon and oxygen in animal metabolism to mechanistically relate these traits to the carbon isotopes in fish otoliths (δC).

View Article and Find Full Text PDF

The refinement of neural circuits towards mature function is driven during development by patterned spontaneous calcium-dependent electrical activity. In the auditory system, this sensory-independent activity arises in the pre-hearing cochlea and regulates the survival and refinement of the auditory pathway. However, the origin and interplay of calcium signals during cochlear development is unknown in vivo.

View Article and Find Full Text PDF

Myosin-VIIA (MYO7A) is an unconventional myosin responsible for syndromic (Usher 1B) or nonsyndromic forms of deafness in humans when mutated. In the cochlea, MYO7A is expressed in hair cells, where it is believed to act as the motor protein tensioning the mechanoelectrical transducer (MET) channels, thus setting their resting open probability (). However, direct evidence for this unique role for an unconventional myosin in mature hair cells is lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!