Tumor relapse after human leukocyte antigen-matched allogeneic stem cell transplantation (SCT) remains a serious problem, despite the long-term presence of minor histocompatibility antigen (MiHA)-specific memory T cells. Dendritic cell (DC)-based vaccination boosting MiHA-specific T-cell immunity is an appealing strategy to prevent or counteract tumor recurrence, but improvement is necessary to increase the clinical benefit. Here, we investigated whether knockdown of programmed death ligand 1 (PD-L1) and PD-L2 on monocyte-derived DCs results in improved T-cell activation. Electroporation of single siRNA sequences into immature DCs resulted in efficient, specific, and long-lasting knockdown of PD-L1 and PD-L2 expression. PD-L knockdown DCs strongly augmented interferon-γ and interleukin-2 production by stimulated T cells in an allogeneic mixed lymphocyte reaction, whereas no effect was observed on T-cell proliferation. Moreover, we demonstrated that PD-L gene silencing, especially combined PD-L1 and PD-L2 knockdown, resulted in improved proliferation and cytokine production of keyhole limpet hemocyanin-specific CD4(+) T cells. Most importantly, PD-L knockdown DCs showed superior potential to expand MiHA-specific CD8(+) effector and memory T cells from leukemia patients early after donor lymphocyte infusion and later during relapse. These data demonstrate that PD-L siRNA electroporated DCs are highly effective in enhancing T-cell proliferation and cytokine production, and are therefore attractive cells for improving the efficacy of DC vaccines in cancer patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1182/blood-2010-04-278739 | DOI Listing |
Immunotargets Ther
January 2025
Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, People's Republic of China.
Purpose: Our previous study has demonstrated that high expression of immune checkpoints (ICs) was significantly associated with adverse clinical outcomes in patients with acute myeloid leukemia (AML). This study aims to investigate the significance of the alteration of IC co-expression for evaluating the prognosis of AML patients following allogeneic hematopoietic stem cell transplantation (allo-HSCT).
Patients And Methods: Quantitative real-time PCR (qRT-PCR) data of bone marrow (BM) samples from 62 de novo AML patients, including 37 patients who received allo-HSCT and 25 patients who received chemotherapy only, were used for prognostic analysis.
Cells
January 2025
Department of Oncology (Medical Oncology), Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
Kaposi Sarcoma (KS) is a vascular tumor originating from endothelial cells and is associated with human herpesvirus 8 (KSHV) infection. It disproportionately affects populations facing health disparities. Although antiretroviral therapy (ART) has improved KS control in people with HIV (PWH), treatment options for advanced KS remain limited.
View Article and Find Full Text PDFAttempts to activate an anti-tumor immune response in glioblastoma (GBM) have been met with many challenges due to its inherently immunosuppressive tumor microenvironment. The degree and mechanisms by which molecularly and phenotypically diverse tumor-propagating glioma stem cells (GSCs) contribute to this state are poorly defined. In this study, our multifaceted approach combining bioinformatics analyses of clinical and experimental datasets, single-cell sequencing, and molecular and pharmacologic manipulation of patient-derived cells identified GSCs expressing immunosuppressive effectors mimicking regulatory T cells (Tregs).
View Article and Find Full Text PDFBackground: Metabolic pathways are known to significantly impact the development and advancement of lung cancer. This study sought to establish a signature related to butyrate metabolism that is specifically linked to lung adenocarcinoma (LUAD).
Methods: For the purpose of identifying butyrate metabolism-related differentially expressed genes (BMR-DEGs) in the TCGA-LUAD dataset, we introduced transcriptome data.
Int Immunopharmacol
January 2025
Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China; International Center for Allergy Research, Nanjing Medical University, Nanjing, China. Electronic address:
Background: The etiology of allergic rhinitis (AR), in which genetic and environmental factors are closely intertwined, has not yet been completely clarified. Programmed cell death 1 (PD-1) and its ligands (PD-L1 and PD-L2) regulate the immune and inflammatory responses during the development of immune-related and atopic diseases. To clarify the associations of genetic variants in PD-1, PD-L1 and PD-L2 with susceptibility to AR, gene-gene and gene-environment interactions were investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!