Purpose: To evaluate the efficacy of saracatinib (AZD0530), an oral Src inhibitor, in colorectal cancer (CRC) and to identify biomarkers that predict antitumor activity.

Experimental Design: Twenty-three CRC cell lines were exposed to saracatinib, and baseline gene expression profiles of three sensitive and eight resistant cell lines in vitro and in vivo were used to predict saracatinib sensitivity in an independent group of 10 human CRC explant tumors using the gene array K-Top Scoring Pairs (K-TSP) method. In addition, fluorescence in situ hybridization (FISH) and immunoblotting determined both Src gene copy number and activation of Src, respectively.

Results: Two of 10 explant tumors were determined to be sensitive to saracatinib. The K-TSP classifier (TOX>GLIS2, TSPAN7>BCAS4, and PARD6G>NXN) achieved 70% (7 of 10) accuracy on the test set. Evaluation of Src gene copy number by FISH showed a trend toward significance (P = 0.066) with respect to an increase in Src gene copy and resistance to saracatinib. Tumors sensitive to saracatinib showed an increase in the activation of Src and FAK when compared with resistant tumors.

Conclusions: Saracatinib significantly decreased tumor growth in a subset of CRC cell lines and explants. A K-TSP classifier (TOX>GLIS2, TSPAN7>BCAS4, and PARD6G>NXN) was predictive for sensitivity to saracatinib. In addition, increased activation of the Src pathway was associated with sensitivity to saracatinib. These results suggest that FISH, a K-TSP classifier, and activation of the Src pathway have potential in identifying CRC patients that would potentially benefit from treatment with saracatinib.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3805460PMC
http://dx.doi.org/10.1158/1078-0432.CCR-10-0066DOI Listing

Publication Analysis

Top Keywords

activation src
16
cell lines
12
src gene
12
gene copy
12
k-tsp classifier
12
saracatinib
11
src
9
gene array
8
fluorescence situ
8
situ hybridization
8

Similar Publications

Background: The early stages of tumor bone metastasis are closely associated with changes in the vascular niche of the bone microenvironment, and abnormal angiogenesis accelerates tumor metastasis and progression. However, the effects of lung adenocarcinoma (LUAD) cells reprogrammed by the bone microenvironment on the vascular niche within the bone microenvironment and the underlying mechanisms remain unclear. This study investigates the effects and mechanisms of LUAD cells reprogrammed by the bone microenvironment on endothelial cells and angiogenesis, providing insights into the influence of tumor cells on the vascular niche within the bone microenvironment.

View Article and Find Full Text PDF

Exploring the mechanisms of Yang Wei Shu granule for the treatment of chronic atrophic gastritis using UPLC-QTOF-MS/MS, network pharmacology, and cell experimentation.

J Ethnopharmacol

January 2025

College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012 Anhui, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012 Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012 Anhui, China; Anhui Engineering Research Center for Quality Improvement and Utilization of Genuine Chinese Medicinal Materials, Hefei 230012 Anhui, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012 Anhui, China. Electronic address:

Article Synopsis
  • YWSG is an herbal compound derived from ancient Chinese medicine used for treating chronic atrophic gastritis (CAG), which can lead to gastric cancer.
  • The study aims to identify the chemical composition of YWSG and understand its mechanisms of action through advanced analytical techniques and network pharmacology.
  • Results revealed 150 compounds in YWSG, with several target genes identified as potential therapeutic targets, and experiments indicated that YWSG does not harm certain immune cells while inhibiting nitric oxide production.
View Article and Find Full Text PDF

MDM2 and MDM4 are major negative regulators of tumor suppressor p53. Beyond regulating p53, MDM2 possesses p53-independent activity in promoting cell cycle progression and tumorigenesis via its RING domain ubiquitin E3 ligase activity. MDM2 and MDM4 form heterodimer polyubiquitin E3 ligases via their RING domain interaction.

View Article and Find Full Text PDF

The src-homology 2 domain-containing phosphatase 2 (SHP2) is a human cytoplasmic protein tyrosine phosphatase that plays a crucial role in cellular signal transduction. Aberrant activation and mutations of SHP2 are associated with tumor growth and immune suppression, thus making it a potential target for cancer therapy. Initially, researchers sought to develop inhibitors targeting SHP2's catalytic site (protein tyrosine phosphatase domain, PTP).

View Article and Find Full Text PDF

SRC enhanced cisplatin resistance in bladder cancer by reprogramming glycolysis and pentose phosphate pathway.

Commun Biol

January 2025

Institute of Urology, The Second Hospital of Lanzhou University, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, Lanzhou, Gansu, China.

The development of cisplatin resistance often results in a grim prognosis in advanced or recurrent bladder cancer. However, effective treatment strategies for cisplatin resistance have not been well established. Herein, we found that overactivation of SRC is associated with cisplatin-resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!