Nucleotides act as early signals for microglial recruitment to sites of CNS injury. As microglial motility and activation can be influenced by several local factors at the site of the lesion, we investigated the effects of interferon-gamma, lipopolysaccharide (LPS) or transforming growth factor-β (TGF-β) addition to mixed glial cell cultures, on microglial migration in response to ADP, P2Y12 and P2Y1 mRNA expression as well as on the expression of an array of genes associated with the process of microglial activation. First, we demonstrated, by pharmacological inhibition and by using small interfering RNAs, that in addition to P2Y12, P2Y1 is involved in ADP-stimulated microglial migration. The ability of specific agonists to induce Ca(2+) mobilization further confirmed the expression of functional P2Y receptors in microglia. Then, we found that migratory capability and expression of both P2Y receptors were abrogated in microglial cells from LPS-stimulated mixed glial cultures, while TGF-β increased ADP-induced migration and the expression of P2Y12 and P2Y1 receptors. Interferon-gamma did not influence receptor expression or microglial migration. Finally, the patterns of gene expression induced in microglia by LPS or TGF-β treatment of mixed glial cultures were clearly distinct. LPS induced a set of classical pro-inflammatory genes, whereas TGF-β increased the expression of genes associated with atypical microglial phenotype, namely arginase-1 and TGF-β genes. These results imply that both P2Y1 and P2Y12 may guide microglia toward the lesion. They also suggest that the modulation of microglial purinergic receptors expression by local factors, through direct and/or astrocyte-mediated actions, may represent a novel mechanism affecting neuroinflammatory response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1471-4159.2010.06937.x | DOI Listing |
Alzheimers Res Ther
January 2025
Danish Dementia Research Centre, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Inge Lehmans Vej 8, Copenhagen, DK-2100, Denmark.
Background: For clinical implementation of Alzheimer's disease (AD) blood-based biomarkers (BBMs), knowledge of short-term variability, is crucial to ensure safe and correct biomarker interpretation, i.e., to capture changes or treatment effects that lie beyond that of expected short-term variability and considered clinically relevant.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Department of Drug and Health Sciences, University of Catania, Catania, Italy; Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy. Electronic address:
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and memory loss. A critical aspect of AD pathology is represented by oxidative stress, which significantly contributes to neuronal damage and death. Microglia and astrocytes, the primary glial cells in the brain, are crucial for managing oxidative stress and supporting neuronal function.
View Article and Find Full Text PDFAlzheimers Dement (Amst)
January 2025
Introduction: Studies have shown that blood biomarkers can differentiate dementia disorders. However, the diagnosis of dementia still relies primarily on cerebrospinal fluid and imaging modalities. The new disease-modifying treatments call for more widely applicable biomarkers.
View Article and Find Full Text PDFJ Gerontol B Psychol Sci Soc Sci
January 2025
Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA.
Objectives: Loneliness is associated with an elevated risk of dementia. There is mixed evidence from imaging studies on whether loneliness is associated with neuropathology in dementia-free adults. This study tests whether loneliness is associated with plasma neurobiomarkers of amyloid (Aβ42/Aβ40), phosphorylated tau 181 (pTau181), neurofilament light chain (NfL), and glial fibrillary acidic protein (GFAP) and imaging measures of amyloid and tau.
View Article and Find Full Text PDFIntroduction: Age-associated depletion in nicotinamide adenine dinucleotide (NAD+) concentrations has been implicated in metabolic, cardiovascular, and neurodegenerative disorders. Supplementation with NAD+ precursors, such as nicotinamide riboside (NR), offers a potential therapeutic avenue against neurodegenerative pathologies in aging, Alzheimer's disease, and related dementias. A crossover, double-blind, randomized placebo (PBO) controlled trial was conducted to test the safety and efficacy of 8 weeks' active treatment with NR (1 g/day) on cognition and plasma AD biomarkers in older adults with subjective cognitive decline and mild cognitive impairment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!