Cellular lesions (e.g. DSBs) are induced into DNA upon exposure to radiation, with DSB complexity increasing with radiation ionization density. Using M059K and M059J human glioblastoma cells (proficient and deficient in DNA-PKcs activity, respectively), we investigated the repair of DNA damage, including DSBs, induced by high- and low-LET radiation [gamma rays, alpha particles and high-charge and energy (HZE) ions]. In the absence of DNA-PKcs activity, less DSB repair and increased recruitment of RAD51 was seen at 24 h. After exposure to (56)Fe heavy ions, the number of cells with RAD51 tracks was less than the number of cells with gamma-H2AX at 24 h with both cell lines. Using alpha particles, comparable numbers of cells with visible gamma-H2AX and RAD51 were seen at 24 h in both cell lines. M059J cells irradiated with alpha particles accumulated in S phase, with a greater number of cyclin A and RAD51 co-stained cells seen at 24 h compared with M059K cells, where an S-phase block is absent. It is proposed that DNA-PKcs plays a role in the repair of some frank DSBs, which are longer-lived in NHEJ-deficient cells, and some non-DSB clustered damage sites that are converted into DSBs at replication as the cell cycles through to S phase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1667/RR2071.1 | DOI Listing |
Pharmaceuticals (Basel)
December 2024
Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstr. 74, 01307 Dresden, Germany.
(1) : Targeted alpha therapy is an emerging field in nuclear medicine driven by two advantages: overcoming resistance in cancer-suffering patients to beta therapies and the practical application of lower activities of Pb- and Ac-labelled peptides to achieve the same doses compared to beta therapy due to the highly cytotoxic nature of alpha particles. However, quality control of the Pb/Ac-radiopharmaceuticals remains a challenge due to the low activity levels used for therapy (100 kBq/kg) and the formation of several free daughter nuclides immediately after the formulation of patient doses; (2) : The routine alpha detection on thin-layer chromatograms (TLC) of Pb- and Ac-labelled peptides using a MiniScanPRO+ scanner combined with an alpha detector head was compared with detection using an AR-2000 scanner equipped with an open proportional counter tube. Measurement time, resolution and validity were compared for both scanners; (3) : For Ac, the quality control values of the radiochemical purity (RCP) were within the acceptance criteria 2 h after TLC development, regardless of when the TLC probe was taken.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710071, China.
Relay protection devices must operate continuously throughout the year without anomalies. With the integration of advanced technology and process chips in secondary equipment, new risks need to be addressed to ensure the reliability of these relay protection devices. One such risk is the impact of α-particles inducing single event effects (SEEs) on the secondary equipment.
View Article and Find Full Text PDFBiomedicines
January 2025
Department of Chemistry, Faculty of Sciences, Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale 17100, Turkey.
: Tannic acid (TA) is a well-known natural phenolic acid composed of ten gallic acids linked to each other with ester bonding possessing excellent antioxidant properties in addition to antimicrobial and anticancer characteristics. Arginine (ARG) is a positively charged amino acid at physiological pH because of nitrogen-rich side chain. : Here, poly(tannic acid-co-arginine) (p(TA-co-ARG)) particles at three mole ratios, TA:ARG = 1:1, 1:2, and 1:3, were prepared via a Mannich condensation reaction between TA and ARG by utilizing formaldehyde as a linking agent.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.
Achieving a substantial increase in the ammonia productivity of the Haber-Bosch (HB) process at low temperatures has been a significant challenge for over 100 years. However, the iron catalyst designed over 100 years ago remains at the forefront of this process because it is difficult to exceed the industrial iron catalyst in terms of the ammonia synthesis rate/catalyst volume that determines ammonia productivity in a reactor. Here, a new catalyst with an inverse structure of a supported metal catalyst that consists of metallic iron particles loaded with an aluminum hydride species is reported.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou 213164, China.
The development of copper-based materials with a high efficiency and low cost is desirable for use in iodine (I) remediation. Herein, Cu-nanoparticles-functionalized, ZIF-8 (Zeolite Imidazole Framework-8)-derived, nitrogen-doped carbon composites (Cu@Zn-NC) were synthesized by ball milling and pyrolysis processes. The as-prepared composites were characterized using SEM, BET, XRD, XPS, and FT-IR analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!