Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The influence of the chemical composition and of the storage and activation protocol on the diffusion of methanol into strongly chemically zoned crystals of the silicoaluminophosphate zeotype STA-7 has been investigated by interference microscopy. Analysis of the evolution of transient intracrystalline concentration profiles reveals that just-calcined SAPO STA-7 crystals with lower Si content (Si/(Si + P) = 0.18) exhibit higher surface permeability and bulk diffusivity than those with higher Si content (S/(Si + P) = 0.37). Remarkably, crystals with the higher Si content which were stored in the calcined form crack during activation along planes of weakness already present in the as-prepared crystals, creating fresh surfaces through regions of lower Si that are much more easily penetrated by the adsorbing methanol than are the original surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja104016n | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!