AI Article Synopsis

  • The study focuses on identifying immunodominant epitopes of carbonic anhydrase isoform I (CA I), linked to spontaneous tumor regression in patients who developed autoantibodies after high-dose therapy.
  • The research utilizes an enhanced epitope mapping technique that combines protein fragmentation, immunospecific isolation, and mass spectrometry, supported by bioinformatics for analysis.
  • Four potential therapeutic epitopes (NVGHS, DGLAV, SSEQL, and SLKPI) are proposed as targets due to their association with patient recovery and the identified method's effectiveness.

Article Abstract

This work employs an epitope mapping of carbonic anhydrase (CA), isoform I (CA I), for detection of the main immunodominant epitopes. Our interest has arisen from an observed spontaneous tumor regression in patients who developed an aplastic anemia type syndrome after a high-dose therapy with autologous stem cell transplantation and whose sera contained high titer of anti carbonic anhydrase (anti-CA) autoantibodies. There are many indications that the presence of these autoantibodies may provide significant survival benefit for the patients. Western blot analysis confirmed strong immunoreactivity of the patients' sera with several CA isoforms and the CA I has been selected for our study as a highly abundant and widely distributed isoform. The applied analytical approach consists of specific fragmentation of CA I protein followed by immunospecific isolation of peptides reacting with polyclonal anti-CA I autoantibodies of patients in spontaneous remission. We improved the standard epitope mapping schema by incorporating the benefits of magnetic carriers and biomagnetic separation techniques. Mass spectrometry has been applied for detection and identification of epitopes and the acquired results were verified by bioinformatic tools. The candidate epitopes of CA I (NVGHS, DGLAV, SSEQL, and SLKPI) are discussed herein as potential therapeutic targets. This work highlights the usefulness of the epitope mapping technique based on magnetic microspheres for effective and rapid determination of immunodominant epitopes of the target protein.

Download full-text PDF

Source
http://dx.doi.org/10.1021/pr1004778DOI Listing

Publication Analysis

Top Keywords

carbonic anhydrase
12
immunodominant epitopes
12
epitope mapping
12
autologous stem
8
stem cell
8
cell transplantation
8
anti-ca autoantibodies
8
epitopes
5
identification carbonic
4
anhydrase immunodominant
4

Similar Publications

Ancestral carbonic anhydrase with significantly enhanced stability and activity for CO capture and utilization.

Bioresour Technol

January 2025

Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China. Electronic address:

Carbonic anhydrases (CAs) has garnered increasing attention in carbon capture, utilization and storage (CCUS) due to their ecological friendliness. However, most of them suffer susceptibility to deactivation in harsh conditions. Herein, a reliable dataset was adopted for creating ancestral CAs through an optimized ancestral sequence reconstruction (ASR) method.

View Article and Find Full Text PDF

Recent Advances and Future Directions in Extracorporeal Carbon Dioxide Removal.

J Clin Med

December 2024

Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners, London SE1 9RT, UK.

Extracorporeal carbon dioxide removal (ECCOR) is an emerging technique designed to reduce carbon dioxide (CO) levels in venous blood while enabling lung-protective ventilation or alleviating the work of breathing. Unlike high-flow extracorporeal membrane oxygenation (ECMO), ECCOR operates at lower blood flows (0.4-1.

View Article and Find Full Text PDF

Exploring the Inhibition of α-Carbonic Anhydrase by Sulfonamides: Insights into Potential Drug Targeting.

Int J Mol Sci

December 2024

Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy.

, the causative agent of toxoplasmosis, is a protozoan parasite capable of infecting a wide range of hosts, posing significant health risks, particularly to immunocompromised individuals and congenital transmission. Current therapeutic options primarily target the active tachyzoite stage but are limited by issues such as toxicity and incomplete efficacy. As a result, there is an urgent need for alternative therapies that can selectively target parasite-specific mechanisms critical for metabolic processes and host-parasite interactions.

View Article and Find Full Text PDF

The green unicellular algae contains 12-13 carbonic anhydrases (CAs). For a long time, the two closely related α-CAs of the periplasmic membrane CAH1 and CAH2 were considered to be the CAs with the highest CO hydration activity. The recombinant protein α-CA CAH3 (rCAH3) from the thylakoid lumen obtained in the present study showed more than three times higher activity compared to CAH1 and more than 11 times higher compared to previous studies with rCAH3.

View Article and Find Full Text PDF

Novel 3-sulfonamide pyrrol-2-one derivatives containing two sulfonamide groups were synthesized via a one-pot, three-component method using trifluoroacetic acid as a catalyst. Structural confirmation was achieved using spectroscopic techniques. The compounds were tested against four selected human carbonic anhydrase isoforms (hCA I, hCA II, hCA IX, and hCA XII).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!