Exploring reversible quenching of fluorescence from a pyrazolo[3,4-b]quinoline derivative by protonation.

Chemphyschem

Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, PR China.

Published: August 2010

Pyrazolo[3,4-b]quinoline derivatives are reported to be highly efficient organic fluorescent materials suitable for applications in light-emitting devices. Although their fluorescence remains stable in organic solvents or in aqueous solution even in the presence of H(2)O, halide salts (LiCl), alkali (NaOH) and weak acid (acetic acid), it suffers an efficient quenching process in the presence of protic acid (HCl) in aqueous or ethanolic solution. This quenching process is accompanied by a change in the UV spectrum, but it is reversible and can be fully recovered. Both steady-state and transient fluorescence spectra of 1-phenyl-3,4-dimethyl-1H-pyrazolo-[3,4-b]quinoline (PAQ5) during quenching are measured and analyzed. It is found that a combined dynamic and static quenching mechanism is responsible for the quenching processes. The ground-state proton-transfer complex [PAQ5H(+)] is responsible for static quenching. It changes linearly with proton concentration [H(+)] with a bimolecular association constant K(S)=1.95 M(-1) controlled by the equilibrium dissociation of HCl in ethanol. A dynamic quenching constant K(D)=22.4 M(-1) is obtained by fitting to the Stern-Volmer equation, with a bimolecular dynamic quenching rate constant k(d)=1.03x10(9) s(-1) M(-1) under ambient conditions. A change in electron distribution is simulated and explains the experiment results.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201000152DOI Listing

Publication Analysis

Top Keywords

quenching
9
quenching process
8
static quenching
8
dynamic quenching
8
exploring reversible
4
reversible quenching
4
quenching fluorescence
4
fluorescence pyrazolo[34-b]quinoline
4
pyrazolo[34-b]quinoline derivative
4
derivative protonation
4

Similar Publications

Organophotoredox-Driven Three-Component Synthesis of β-Trifluoromethyl β-Amino Ketones†.

J Org Chem

January 2025

Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain.

In this work, we present a photoredox three-component reaction that enables the synthesis of medicinally relevant β-trifluoromethyl β-amino ketones from a -trifluoroethylhydroxylamine derivative, styrenes and DMSO. Remarkably, fluoromethyl, difluoromethyl and pentafluoroethyl analogues are also accessed using the same reaction conditions. The mechanistic investigations, including radical trapping experiments, cyclic voltammetry, Stern-Volmer quenching studies and isotope labelling experiments support the photoinduced radical/polar crossover and Kornblum-type oxidation mechanisms.

View Article and Find Full Text PDF

Developing highly efficient deep-blue multi-resonance thermal activated delayed fluorescence (MR-TADF) materials for ultra-high-definition organic light-emitting diodes (OLEDs) displays that meet the stringent BT.2020 standard remains a significant challenge. In this study, we present a strategy to achieve high-performance deep-blue MR-TADF emitters by integrating a large π-conjugated double-boron-embedded MR skeleton with strategically positioned peripheral steric hindrance groups.

View Article and Find Full Text PDF

Fiber Sorbents - A Versatile Platform for Sorption-Based Gas Separations.

Acc Mater Res

January 2025

School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30322, United States.

Increasing demand for high-purity fine chemicals and a drive for process intensification of large-scale separations have driven significant work on the development of highly engineered porous materials with promise for sorption-based separations. While sorptive separations in porous materials offer energy-efficient alternatives to longstanding thermal-based methods, the particulate nature of many of these sorbents has sometimes limited their large-scale deployment in high-throughput applications such as gas separations, for which the necessary high feed flow rates and gas velocities accrue prohibitive operational costs. These processability limitations have been historically addressed through powder shaping methods aimed at the fabrication of structured sorbent contactors based on pellets, beads or monoliths, commonly obtained as extrudates.

View Article and Find Full Text PDF

Electron paramagnetic resonance and photoluminescence study on local structure of Gd ions in Gd-doped CaF crystals.

RSC Adv

January 2025

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 201899 China.

Employing electron paramagnetic resonance (EPR) and excitation and photoluminescence (PL) spectra, changes of the local structure of Gd ions were investigated for the CaF crystals containing 0.00015, 0.17, 1.

View Article and Find Full Text PDF

A green facile method was developed to synthesize the carbon quantum dots from barberry, a native plant, as a new carbon source. The synthesis strategy is a simple one-step hydrothermal process without requiring hazardous chemical reagents. The spherical structure of b-CDs with an average particle size of 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!