Imaging mass spectrometry: viewing the future.

Methods Mol Biol

David H. Murdock Research Institute, North Carolina Research Campus, Kannapolis, NC, USA.

Published: December 2010

AI Article Synopsis

  • Imaging mass spectrometry (IMS) is a powerful technique that analyzes complex molecular mixtures in various biological samples with high specificity.
  • It allows for the simultaneous detection of different molecular species, including small metabolites and large proteins, in a single experiment, providing detailed spatial distributions and quantitative data.
  • IMS generates unique images from direct molecular measurements rather than relying on specific reagents, making it a valuable tool for molecular discovery and identification.

Article Abstract

Imaging mass spectrometry (IMS) technology is an effective tool that is able to assess complex molecular mixtures in cells, tissues, or other sample types with high chemical specificity, allowing concurrent analysis of a variety of molecular species in a wide mass range, from small metabolites to large macromolecules such as proteins. Simultaneous localization of molecules, detection of post-translational modifications, and relative quantitative information can be obtained in a single experiment. Images generated by MS are unique because they are derived from direct molecular measurements and do not rely on target-specific reagents such as antibodies. Thus, the ability to map spatial distributions coupled with the mass accuracy and chemical specificity for MS-based detection makes IMS an effective discovery tool. Further structural assessment of compounds, including MS/MS fragmentation analysis, can be utilized in an imaging experiment to achieve accurate molecular identifications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-60761-746-4_1DOI Listing

Publication Analysis

Top Keywords

imaging mass
8
mass spectrometry
8
chemical specificity
8
spectrometry viewing
4
viewing future
4
future imaging
4
spectrometry ims
4
ims technology
4
technology effective
4
effective tool
4

Similar Publications

Intraindividual Comparison of Image Quality Between Low-Dose and Ultra-Low-Dose Abdominal CT With Deep Learning Reconstruction and Standard-Dose Abdominal CT Using Dual-Split Scan.

Invest Radiol

January 2025

From the Department of Radiology, Ulsan University Hospital, Ulsan, Republic of Korea (T.Y.L.); Department of Radiology, University of Ulsan College of Medicine, Seoul, Republic of Korea (T.Y.L.); Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea (J.H.Y., H.K., J.M.L.); Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (J.H.Y., S.H.P., J.M.L.); Department of Radiology, Inje University Busan Paik Hospital, Busan, Republic of Korea (J.Y.P.); Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea (S.H.P.); Department of Radiology, Hanyang University College of Medicine, Seoul, Republic of Korea (C.L.); Division of Biostatistics, Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Republic of Korea (Y.C.); and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (J.M.L.).

Objective: The aim of this study was to intraindividually compare the conspicuity of focal liver lesions (FLLs) between low- and ultra-low-dose computed tomography (CT) with deep learning reconstruction (DLR) and standard-dose CT with model-based iterative reconstruction (MBIR) from a single CT using dual-split scan in patients with suspected liver metastasis via a noninferiority design.

Materials And Methods: This prospective study enrolled participants who met the eligibility criteria at 2 tertiary hospitals in South Korea from June 2022 to January 2023. The criteria included (a) being aged between 20 and 85 years and (b) having suspected or known liver metastases.

View Article and Find Full Text PDF

Even though Leydig cell tumor (LCT) represents the most common neoplasia among testicular sex cord-stromal tumors (SCSTs), it is a rare condition, comprising 1-2% of all testicular tumors, with a 10% risk of malignancy most commonly located in retroperitoneal lymph nodes. LCTs may demonstrate various clinical manifestations - from asymptomatic intratesticular swelling through nonspecific symptoms such as loss of libido, impotence or infertility, up to feminizing or virilizing syndromes due to hormonal activity of the tumor. This article presents a case of Leydig cell tumor that was associated with azoospermia what have rarely been reported worldwide.

View Article and Find Full Text PDF

Background: Preventing worsening osteoarthritis (OA) in persons with early OA is a major treatment goal. We evaluated if different early OA definitions yielded enough cases of worsening OA within 2-5 years to make trial testing treatments feasible.

Methods: We assessed different definitions of early OA using data from Multicenter Osteoarthritis (MOST) Study participants who were followed up longitudinally.

View Article and Find Full Text PDF

Accelerated Endosomal Escape of Splice-Switching Oligonucleotides Enables Efficient Hepatic Splice Correction.

ACS Appl Mater Interfaces

January 2025

Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.

Splice-switching oligonucleotides (SSOs) can restore protein functionality in pathologies and are promising tools for manipulating the RNA-splicing machinery. Delivery vectors can considerably improve SSO functionality in vivo and allow dose reduction, thereby addressing the challenges of RNA-targeted therapeutics. Here, we report a biocompatible SSO nanocarrier, based on redox-responsive disulfide cross-linked low-molecular-weight linear polyethylenimine (cLPEI), for overcoming multiple biological barriers from subcellular compartments to en-route serum stability and finally in vivo delivery challenges.

View Article and Find Full Text PDF

Association of Obesity and Skeletal Muscle with Postoperative Survival in Non-Small Cell Lung Cancer.

Radiology

January 2025

From the Department of Radiology (J.H.L.) and Department of Thoracic and Cardiovascular Surgery (J.L., Y.J.J., S.Y.P., J.H.C., Y.S.C., J.K., Y.M.S., H.K.K.), Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea; Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, 115 Irwon-ro, Gangnam-gu, Seoul 06355, Korea (D.K., J.L., S.Y.P., S.K., J.C.); Center for Clinical Epidemiology, Sungkyunkwan University, Samsung Medical Center, Seoul, Korea (D.K., J.C.); Patient-Centered Outcomes Research Institute, Samsung Medical Center, Seoul, Korea (J.L., Y.M.S., S.K., H.K.K., J.C.); and Department of Epidemiology and Medicine, Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Md (J.C.).

Background A comprehensive assessment of skeletal muscle health is crucial to understanding the association between improved clinical outcomes and obesity as defined by body mass index (BMI; calculated as weight in kilograms divided by height in meters squared) in lung cancer, but limited studies have been conducted on this topic. Purpose To investigate the association between BMI-defined obesity and survival in patients with non-small cell lung cancer who underwent curative resection, with a specific focus on the status of skeletal muscle assessed at CT. Materials and Methods This retrospective study investigated Korean patients with non-small cell lung cancer who underwent curative resection between January 2008 and December 2019.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!