Electronic parameters for charge transfer along DNA.

Eur Phys J E Soft Matter

Materials Science Department, University of Patras, GR-26504, Rio, Greece.

Published: July 2010

We systematically examine all the tight-binding parameters pertinent to charge transfer along DNA. The pi molecular structure of the four DNA bases (adenine, thymine, cytosine, and guanine) is investigated by using the linear combination of atomic orbitals method with a recently introduced parametrization. The HOMO and LUMO wave functions and energies of DNA bases are discussed and then used for calculating the corresponding wave functions of the two B-DNA base-pairs (adenine-thymine and guanine-cytosine). The obtained HOMO and LUMO energies of the bases are in good agreement with available experimental values. Our results are then used for estimating the complete set of charge transfer parameters between neighboring bases and also between successive base-pairs, considering all possible combinations between them, for both electrons and holes. The calculated microscopic quantities can be used in mesoscopic theoretical models of electron or hole transfer along the DNA double helix, as they provide the necessary parameters for a tight-binding phenomenological description based on the pi molecular overlap. We find that usually the hopping parameters for holes are higher in magnitude compared to the ones for electrons. Our findings are also compared with existing calculations from first principles.

Download full-text PDF

Source
http://dx.doi.org/10.1140/epje/i2010-10650-yDOI Listing

Publication Analysis

Top Keywords

charge transfer
12
transfer dna
12
dna bases
8
homo lumo
8
wave functions
8
dna
5
electronic parameters
4
parameters charge
4
transfer
4
dna systematically
4

Similar Publications

Drug-assisted White Light Generation via Self-assembly.

Chem Asian J

January 2025

IISER Bhopal Department of Chemistry, Chemistry, Indore By-pass Road, Bhauri, 462066, Bhopal, INDIA.

White-light generation using small organic molecules has gained significant attention from researchers working on the interface of supramolecular chemistry and organic materials. Self-assembled multi-chromophoric materials utilizing a drug molecule and microenvironment-sensitive intramolecular charge transfer dye as an emitter offer the possibility of tunable emission. In this investigation, we focused on white light generation via the combination of a polarity-sensitive red-emitting styryl chromone (SC) and a blue-emitting anticancer and psychotherapeutic drug Norharmane (NHM) in a self-assembled micellar system.

View Article and Find Full Text PDF

A flexible cotton-based Ag/AgPO/MXene (APMX) ternary composite material was successfully synthesized, serving as a dual-function and reusable surface-enhanced Raman scattering (SERS) substrate for both sensitive detection and efficient organic dye degradation. The remarkable SERS properties of the composite can be attributed to the combined effects of electromagnetic enhancement by Ag nanoparticles (Ag NPs), charge transfer enhancement from AgPO, and the chemical enhancement mechanisms associated with MXene. When employed for the detection of crystal violet (CV), the material exhibits outstanding sensitivity, achieving a limit of detection (LOD) as low as 3.

View Article and Find Full Text PDF

TiCT/Au NPs/PPy ternary heterostructure-based intra-capacitive self-powered sensor for DEHP detection.

J Hazard Mater

January 2025

Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China. Electronic address:

Phthalate esters, particularly di(2-ethylhexyl) phthalate (DEHP), are widely used plasticizers found in various consumer products, posing significant environmental and health risks due to their endocrine-disrupting effects. In this study, a novel enzyme-free intra-capacitive biofuel cell self-powered sensor (ICBFC-SPS) was developed. The ICBFC-SPS integrated a ternary heterostructure-based capacitive anode and a cathode with a sensing interface into a single-chamber electrolytic cell.

View Article and Find Full Text PDF

A-D-A type fluorescent probe with dual quaternary-ammonium-salt anchors for turn on detection of HSA in wide emission gamut.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122 China. Electronic address:

Human serum albumin (HSA) is a key protein implicates in various physiological and pathological conditions such as renal injury, diabetes mellitus. Herein, we report an AIE-active fluorescent probe (DNI-4) for detection of HSA with a "turn on" response covering visible and near-infrared region (500 - 800 nm). Combining with a triphenylamine and two 1,8-naphthalimide moieties, the chromophore segment of DNI-4 forms a "A-D-A" type molecular architecture with the twisted intramolecular charge transfer property.

View Article and Find Full Text PDF

The advancement of photocatalytic technology for solar-driven hydrogen (H2) production remains hindered by several challenges in developing efficient photocatalysts. A key issue is the rapid recombination of charge carriers, which significantly limits the light-harvesting ability of materials like BiOCl and Cu2SnS3 quantum dots (CTS QDs), despite the faster charge mobility and quantum confinement effect, respectively. Herein, a BiOCl/CTS (BCTS) heterostructure was synthesized by loading CTS QDs onto BiOCl 2D nanosheets (NSs), that demonstrated excellent photocatalytic activity under visible light irradiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!