Background: The mechanism of sinoatrial node (SAN) automaticity is traditionally attributed to membrane ion currents. Recent evidence indicates spontaneous sarcoplasmic reticulum (SR) Ca(2+) cycling also plays an important role.
Methods And Results: A computer simulation on SAN cell and 1D tissue model was performed. In the SAN cells, SR Ca(2+) cycling broadly modulated the sinus rate from 1.74 Hz to 3.87 Hz. Shortening of the junctional SR refilling time and increase of SR Ca(2+) release were responsible for sinus rate acceleration. However, under the fast SR Ca(2+) cycling, decreased L-type Ca(2+) current (I(CaL)) resulted in irregular firing. When Ca(2+) cycling was suppressed, I(f) and I(CaT) both acted to stabilize the pacemaker rhythm, but I(CaT) had less effect than I(f). At the 1D level, the electrical coupling between neighboring cells had little effect on the earliest pacemaker location. The leading pacemaking site always colocalized with the site with the highest SR Ca(2+) cycling rate, but shifted to the site with less inhibited I(CaL).
Conclusions: The rate of SR Ca(2+) cycling can effectively and broadly modulate the sinus rate. I(f), I(CaL) and I(CaT) play integral roles to guarantee SAN cell rhythmic firing. The leading pacemaker site is determined by intracellular Ca(2+) dynamics and membrane currents, indicating the synergistic dual automaticity not only exists in single SAN cells, but also at the tissue level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2952528 | PMC |
http://dx.doi.org/10.1253/circj.cj-10-0265 | DOI Listing |
JCI Insight
January 2025
Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States of America.
Obscurin is a giant protein that coordinates diverse aspects of striated muscle physiology. Obscurin immunoglobulin domains 58/59 (Ig58/59) associate with essential sarcomeric and Ca2+ cycling proteins. To explore the pathophysiological significance of Ig58/59, we generated the Obscn-ΔIg58/59 mouse model, expressing obscurin constitutively lacking Ig58/59.
View Article and Find Full Text PDFChem Biol Interact
January 2025
Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea. Electronic address:
Capsaicin, a polyphenol, is known to regulate energy expenditure and thermogenesis in adipocytes and muscles. However, its role in modulating uncoupling proteins (UCPs) and adenosine triphosphate (ATP)-dependent thermogenesis in muscles remains unclear. This study investigated the mechanisms underlying the role of capsaicin in modulating the UCP- and ATP-dependent thermogenesis in C2C12 myoblasts, as well as the gastrocnemius (GM) and soleus muscles (SM) of mice.
View Article and Find Full Text PDFSci Total Environ
January 2025
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:
Tris (1, 3-dichloro-2-propyl) phosphate (TDCPP) is an extensively used organophosphorus flame retardant (OFR). Previous studies have suggested that it has neurotoxic effects, but the neurotoxicity mechanism is still unclear. Neural stem cells are an important in vitro model for studying the neurotoxicity mechanism of pollutants.
View Article and Find Full Text PDFCells
December 2024
Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institute of Health, Baltimore, MD 21224, USA.
The spontaneous firing of the sinoatrial (SA) node, the physiological pacemaker of the heart, is generated within sinoatrial nodal cells (SANCs) and is regulated by a "coupled-clock" pacemaker system, which integrates a "membrane clock", the ensemble of ion channel currents, and an intracellular "Ca clock", sarcoplasmic reticulum-generated local submembrane Ca releases via ryanodine receptors. The interactions within a "coupled-clock" system are modulated by phosphorylation of surface membrane and sarcoplasmic reticulum proteins. Though the essential role of a high basal cAMP level and PKA-dependent phosphorylation for basal spontaneous SANC firing is well recognized, the role of basal CaMKII-dependent phosphorylation remains uncertain.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:
Cellulose-based porous materials are promising for various fields and preferred for sustainable development. However, the low mechanical properties and high hydrophilicity of cellulose-based xerogels had a direct influence on their application in oil absorption. To address the challenge, an environmentally friendly and economical method for synthesizing MTMS/C0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!