A model-constrained Monte Carlo method for blind arterial input function estimation in dynamic contrast-enhanced MRI: I. Simulations.

Phys Med Biol

Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah Health Sciences Center, 729 Arapeen Drive, Salt Lake City, UT 84108-1218, USA.

Published: August 2010

Widespread adoption of quantitative pharmacokinetic modeling methods in conjunction with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has led to increased recognition of the importance of obtaining accurate patient-specific arterial input function (AIF) measurements. Ideally, DCE-MRI studies use an AIF directly measured in an artery local to the tissue of interest, along with measured tissue concentration curves, to quantitatively determine pharmacokinetic parameters. However, the numerous technical and practical difficulties associated with AIF measurement have made the use of population-averaged AIF data a popular, if sub-optimal, alternative to AIF measurement. In this work, we present and characterize a new algorithm for determining the AIF solely from the measured tissue concentration curves. This Monte Carlo blind estimation (MCBE) algorithm estimates the AIF from the subsets of D concentration-time curves drawn from a larger pool of M candidate curves via nonlinear optimization, doing so for multiple (Q) subsets and statistically averaging these repeated estimates. The MCBE algorithm can be viewed as a generalization of previously published methods that employ clustering of concentration-time curves and only estimate the AIF once. Extensive computer simulations were performed over physiologically and experimentally realistic ranges of imaging and tissue parameters, and the impact of choosing different values of D and Q was investigated. We found the algorithm to be robust, computationally efficient and capable of accurately estimating the AIF even for relatively high noise levels, long sampling intervals and low diversity of tissue curves. With the incorporation of bootstrapping initialization, we further demonstrated the ability to blindly estimate AIFs that deviate substantially in shape from the population-averaged initial guess. Pharmacokinetic parameter estimates for K(trans), k(ep), v(p) and v(e) all showed relative biases and uncertainties of less than 10% for measurements having a temporal sampling rate of 4 s and a concentration measurement noise level of sigma = 0.04 mM. A companion paper discusses the application of the MCBE algorithm to DCE-MRI data acquired in eight patients with malignant brain tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3533367PMC
http://dx.doi.org/10.1088/0031-9155/55/16/011DOI Listing

Publication Analysis

Top Keywords

mcbe algorithm
12
aif
9
monte carlo
8
arterial input
8
input function
8
dynamic contrast-enhanced
8
measured tissue
8
tissue concentration
8
concentration curves
8
aif measurement
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!