Distinct subregions of Swi1 manifest striking differences in prion transmission and SWI/SNF function.

Mol Cell Biol

Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Searle 5-474, MC S205, 320 E. Superior Street, Chicago, IL 60611, USA.

Published: October 2010

We have recently reported that the yeast chromatin-remodeling factor Swi1 can exist as a prion, [SWI(+)], demonstrating a link between prionogenesis and global transcriptional regulation. To shed light on how the Swi1 conformational switch influences Swi1 function and to define the sequence and structural requirements for [SWI(+)] formation and propagation, we functionally dissected the Swi1 molecule. We show here that the [SWI(+)] prion features are solely attributable to the first 327 amino acid residues (N), a region that is asparagine rich. N was aggregated in [SWI(+)] cells but diffuse in [swi(-)] cells; chromosomal deletion of the N-coding region resulted in [SWI(+)] loss, and recombinant N peptide was able to form infectious amyloid fibers in vitro, enabling [SWI(+)] de novo formation through a simple transformation. Although the glutamine-rich middle region (Q) was not sufficient to aggregate in [SWI(+)] cells or essential for SWI/SNF function, it significantly modified the Swi1 aggregation pattern and Swi1 function. We also show that excessive Swi1 incurred Li(+)/Na(+) sensitivity and that the N/Q regions are important for this gain of sensitivity. Taken together, our results provide the final proof of "protein-only" transmission of [SWI(+)] and demonstrate that the widely distributed "dispensable" glutamine/asparagine-rich regions/motifs might have important and divergent biological functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2950522PMC
http://dx.doi.org/10.1128/MCB.00225-10DOI Listing

Publication Analysis

Top Keywords

swi1
8
swi/snf function
8
[swi+]
8
swi1 function
8
[swi+] cells
8
distinct subregions
4
subregions swi1
4
swi1 manifest
4
manifest striking
4
striking differences
4

Similar Publications

Prions represent epigenetic regulator proteins that can self-propagate their structure and confer their misfolded structure and function on normally folded proteins. Like the mammalian prion PrPSc, prions also occur in fungi. While a few prions, like Swi1, affect gene expression, none are shown to affect heterochromatin structure and function.

View Article and Find Full Text PDF

Transcriptional activation domains interact with ATPase subunits of yeast chromatin remodelling complexes SWI/SNF, RSC and INO80.

Curr Genet

September 2024

Center for Functional Genomics of Microbes, Institut Für Genetik Und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany.

Chromatin remodelling complexes (CRC) are ATP-dependent molecular machines important for the dynamic organization of nucleosomes along eukaryotic DNA. CRCs SWI/SNF, RSC and INO80 can move positioned nucleosomes in promoter DNA, leading to nucleosome-depleted regions which facilitate access of general transcription factors. This function is strongly supported by transcriptional activators being able to interact with subunits of various CRCs.

View Article and Find Full Text PDF

A replisome-associated histone H3-H4 chaperone required for epigenetic inheritance.

Cell

September 2024

Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA. Electronic address:

Faithful transfer of parental histones to newly replicated daughter DNA strands is critical for inheritance of epigenetic states. Although replication proteins that facilitate parental histone transfer have been identified, how intact histone H3-H4 tetramers travel from the front to the back of the replication fork remains unknown. Here, we use AlphaFold-Multimer structural predictions combined with biochemical and genetic approaches to identify the Mrc1/CLASPIN subunit of the replisome as a histone chaperone.

View Article and Find Full Text PDF

The Rnq1 protein is one of the best-studied yeast prions. It has a large potentially prionogenic C-terminal region of about 250 residues. However, a previous study indicated that only 40 C-terminal residues form a prion structure.

View Article and Find Full Text PDF

Prions are proteins able to take on alternative conformations and propagate them in a self-templating process. In , prions enable heritable responses to environmental conditions through bet-hedging mechanisms. Hence, [PRION] states may serve as an atypical form of epigenetic control, producing heritable phenotypic change via protein folding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!