The neuronal circuits involved in the regulation of feeding behavior and energy expenditure are soft-wired, reflecting the relative activity of the postsynaptic neuronal system, including the anorexigenic proopiomelanocortin (POMC)-expressing cells of the arcuate nucleus. We analyzed the synaptic input organization of the melanocortin system in lean rats that were vulnerable (DIO) or resistant (DR) to diet-induced obesity. We found a distinct difference in the quantitative and qualitative synaptology of POMC cells between DIO and DR animals, with a significantly greater number of inhibitory inputs in the POMC neurons in DIO rats compared with DR rats. When exposed to a high-fat diet (HFD), the POMC cells of DIO animals lost synapses, whereas those of DR rats recruited connections. In both DIO rats and mice, the HFD-triggered loss of synapses on POMC neurons was associated with increased glial ensheathment of the POMC perikarya. The altered synaptic organization of HFD-fed animals promoted increased POMC tone and a decrease in the stimulatory connections onto the neighboring neuropeptide Y (NPY) cells. Exposure to HFD was associated with reactive gliosis, and this affected the structure of the blood-brain barrier such that the POMC and NPY cell bodies and dendrites became less accessible to blood vessels. Taken together, these data suggest that consumption of an HFD has a major impact on the cytoarchitecture of the arcuate nucleus in vulnerable subjects, with changes that might be irreversible due to reactive gliosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2930476 | PMC |
http://dx.doi.org/10.1073/pnas.1004282107 | DOI Listing |
The accumulation of abnormal, non-mutated tau protein is a key pathological hallmark of Alzheimer's disease (AD). Despite its strong association with disease progression, the mechanisms by which tau drives neurodegeneration in the brain remain poorly understood. Here, we selectively expressed non-mutated or mutated human microtubule-associated protein tau ( ) in neurons across the brain and observed neurodegeneration in the hippocampus, especially associated with non-mutated human tau.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Department of Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey.
Demyelination is commonly observed in neurodegenerative disorders, including multiple sclerosis (MS). Biotin supplementation is known to stabilize MS progression. To reduce the effective dose of biotin, we synthesized a new and superior form of biotin, a complex of magnesium ionically bound to biotin (MgB) and compared its dose-dependent effect with biotin alone after inducing demyelination using lysolecithin (LPC) in rats.
View Article and Find Full Text PDFIntroduction: CLN8-Batten disease is a rare neurodegenerative disorder characterized phenotypically by progressive deterioration of motor and cognitive abilities, visual symptoms, epileptic seizures, and premature death. Mutations in CLN8 result in characteristic Batten disease symptoms and brain-wide pathology including accumulation of lysosomal storage material, gliosis, and neurodegeneration. Recent investigations of other subtypes of Batten disease (CLN1, CLN3, CLN6) have emphasized the influence of biological sex on disease and treatment outcomes; however, little is known about sex differences in the CLN8 subtype.
View Article and Find Full Text PDFJ Neurol
January 2025
Centre de Génétique Humaine, Centre Hospitalier Universitaire de Besançon, Besançon, France.
Introduction: The MAPT gene encodes Tau, a protein mainly expressed by neurons. Tau protein plays an important role in cerebral microtubule polymerization and stabilization, in axonal transport and synaptic plasticity. Heterozygous pathogenic variation in MAPT are involved in a spectrum of autosomal dominant neurodegenerative diseases known as taupathies, including Alzheimer's disease, Pick's disease, fronto-temporal dementia, cortico-basal degeneration and progressive supranuclear palsy.
View Article and Find Full Text PDFIBRO Neurosci Rep
June 2025
Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre 97410, France.
It is well recognized that type II Diabetes (T2D) and overweight/obesity are established risk factors for stroke, worsening also their consequences. However, the underlying mechanisms by which these disorders aggravate outcomes are not yet clear limiting the therapeutic opportunities. To fill this gap, we characterized, for the first time, the effects of T2D and obesity on the brain repair mechanisms occurring 7 days after stroke, notably glial scarring.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!