The purpose of this study is to evaluate in vitro and in vivo gene delivery efficiency of polyamidoamine (PAMAM) starburst dendrimer (generation 2, G2) conjugates with alpha-cyclodextrin (alpha-CDE (G2)) bearing lactose (Lac-alpha-CDE) with various degrees of substitution of the lactose moiety (DSL) as a novel hepatocyte-selective carrier in hepatocytes. Lac-alpha-CDE (DSL 2.6) was found to have much higher gene transfer activity than dendrimer, alpha-CDE, Lac-alpha-CDE (DSL 1.2, 4.6, 6.2 and 10.2) and lactosylated dendrimer (Lac-dendrimer, DSL 2.4) in HepG2 cells, which are dependent on the expression of cell-surface asialoglycoprotein receptor (ASGP-R), reflecting the cellular association of the plasmid DNA (pDNA) complexes. The physicochemical properties of pDNA complex with Lac-alpha-CDE (DSL 2.6) were almost comparable to that with alpha-CDE. Lac-alpha-CDE (DSL 2.6) provided negligible cytotoxicity up to a charge ratio of 150 in HepG2 cells. Lac-alpha-CDE (DSL 2.6) provided gene transfer activity higher than jetPEI-Hepatocyte to hepatocytes with much less changes of blood chemistry values 12h after intravenous administration in mice. These results suggest the potential use of Lac-alpha-CDE (DSL 2.6) as a non-viral vector for gene delivery toward hepatocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2010.05.030 | DOI Listing |
Mol Pharm
June 2012
Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan.
To reveal the potential use of lactosylated-dendrimer (G3) conjugates with α-cyclodextrin (Lac-α-CDE (G3)) as novel hepatocyte-specific siRNA carriers in order to treat transthyretin (TTR)-related familial amyloidotic polyneuropathy (FAP), we evaluated the RNAi effect of siRNA complexes with Lac-α-CDE (G3) both in vitro and in vivo. Herein, we targeted TTR gene expression because TTR-related FAP was often caused by amyloidogenic TTR (ATTR), which mainly expresses in hepatocytes. Lac-α-CDE (G3, average degree of substitution of lactose (DSL) 1.
View Article and Find Full Text PDFJ Control Release
August 2010
Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan.
The purpose of this study is to evaluate in vitro and in vivo gene delivery efficiency of polyamidoamine (PAMAM) starburst dendrimer (generation 2, G2) conjugates with alpha-cyclodextrin (alpha-CDE (G2)) bearing lactose (Lac-alpha-CDE) with various degrees of substitution of the lactose moiety (DSL) as a novel hepatocyte-selective carrier in hepatocytes. Lac-alpha-CDE (DSL 2.6) was found to have much higher gene transfer activity than dendrimer, alpha-CDE, Lac-alpha-CDE (DSL 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!