Background: Roux-en-Y gastric bypass (RYGB) affords a high remission rate of type 2 diabetes mellitus among morbidly obese diabetic patients. We report the use of the isolated islet technique to assess pancreatic function and glucoregulatory mechanisms after RYGB surgery.
Methods: A total of 15 adult, male, Sprague Dawley diet-induced obese rats were randomly divided into 3 experimental groups: sham, RYGB, and pair-fed, with 5 rats in each group. The body weight was measured at baseline and every week for 4 weeks. Pancreatic islet function was assessed in vitro according to the amount of insulin secreted from isolated islets incubated in 2 mM and 20 mM glucose for 1 hour at 37 °C. Fasting plasma glucose, insulin, glucagon-like peptide-1, PYY3-36, and glucose-dependent insulinotropic peptide were measured at baseline and 28 days after surgery.
Results: The baseline body weight was 917 ± 61, 831 ± 42, and 927 ± 43 g for the sham, RYGB, and pair-fed groups, respectively. The RYGB group lost 32% body weight compared with 16% for the sham and 24% for the pair-fed groups. Glucose-stimulated insulin secretion from the isolated islets in the RYGB group was greater than in the comparison groups (P = .04) at 4 weeks after surgery. Fasting plasma glucagon-like peptide-1 and PYY3-36 were significantly increased at 4 weeks in the RYGB group.
Conclusion: Islet isolation and stimulation in the present animal model was feasible, affords a direct measurement of pancreatic islet function, and might provide a useful tool to study the effects of RYGB on pancreatic function and the relationship between islet cell function and incretin production after bariatric surgery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.soard.2010.05.018 | DOI Listing |
Nat Commun
March 2025
State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences and School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
Blockade of the glucagon receptor (GCGR) has been shown to improve glycemic control. However, this therapeutic approach also brings side effects, such as α-cell hyperplasia and hyperglucagonemia, and the mechanisms underlying these side effects remain elusive. Here, we conduct single-cell transcriptomic sequencing of islets from male GCGR knockout (GCGR-KO) mice.
View Article and Find Full Text PDFMol Metab
March 2025
Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Howard Hughes Medical Institute, Dallas, TX, 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. Electronic address:
The bi-functional enzyme FicD catalyzes AMPylation and deAMPylation of the endoplasmic reticulum chaperone BiP to modulate ER homeostasis and the unfolded protein response (UPR). Human hFicD with an arginine-to-serine mutation disrupts FicD deAMPylation activity resulting in severe neonatal diabetes. We generated the mFicD mutation in mice to create a pre-clinical murine model for neonatal diabetes.
View Article and Find Full Text PDFPLoS One
March 2025
Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands.
Type 1 diabetic (T1D) patients are life-long dependent on insulin therapy to keep their blood glucose levels under control. An alternative cell-based therapy for exogenous insulin injections is clinical islet transplantation (CIT). Currently the widespread application of CIT is limited, due to risks associated with the life-long use of immunosuppressive drugs to prevent rejection of donor cells.
View Article and Find Full Text PDFCells
March 2025
Medizinische Klinik und Poliklinik IV, Diabetes Zentrum, Klinikum der Universität München, LMU Munich, 80336 Munich, Germany.
The engraftment of transplanted islets depends on the rapid establishment of a novel vascular network. The present study evaluated the effects of cord blood-derived blood outgrowth endothelial cells (BOECs) on the viability of neonatal porcine islets (NPIs) and the post-transplant outcome of grafted NPIs. Dispersed NPIs and human BOECs were reaggregated on microwell cell culture plates and tested for their anti-apoptotic and pro-angiogenic capacity by qRT-PCR and immunohistochemistry.
View Article and Find Full Text PDFEndokrynol Pol
March 2025
Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, Guangxi, China.
Introduction: Thiamine-responsive megaloblastic anaemia syndrome (TRMA) is a rare genetic disease caused by mutations in the SLC19A2 gene that encodes thiamine transporter 1 (THTR-1). The common manifestations are diabetes, anaemia, and deafness. The pathogenic mechanism has not yet been clarified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!