A sequencing batch reactor (SBR) employing a low superficial gas velocity was used to produce aerobic granular sludge for wastewater treatment. At a gas velocity of 0.0056 m s(-1) sludge containing a mixture of light yellow and black granules with similar functional groups was quickly formed. The black granules contained crystals of CaCO(3), FeS, and Fe(2)O(3) as well as filamentous bacteria that strengthened the particles and reduced the mass transfer resistance. No inorganic crystals were detected in the yellow sludge granules, and their structure was maintained through cohesion mediated by extracellular polymeric substances (EPS). The light yellow granules were denser and offered better settling performance than the black granules, enhancing the settling properties of the mixed sludge. During a 12-h cycle, the maximum reductions in chemical oxygen demand (COD), NH(3)-N, and total nitrogen (TN) occurred at 240, 480, and 360 min with removal efficiencies of 90%, 90%, and 54%. When the cycle time was limited to 480 min, self-dissolution of the granules was avoided while sill maintaining removal efficiencies for COD, NH(3)-N, and TN of 88%, 90%, and 53%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2010.07.045 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!