Misoprostol elevates intracellular calcium in Neuro-2a cells via protein kinase A.

Biochem Biophys Res Commun

School of Kinesiology and Health Science, York University, Toronto, Canada; Neuroscience Graduate Diploma Program, York University, Toronto, Canada.

Published: September 2010

Misoprostol, a prostaglandin type E analogue, has been implicated in a number of neurodevelopmental disorders. However, its mode of action in the nervous system is not well understood. Misoprostol acts on the same receptors as prostaglandin E(2) (PGE(2)), a natural lipid-derived compound, which mediates important physiological functions in the nervous system via activation of four EP receptors (EP1-4). In this study we use a ratiometric calcium imaging with fura-2 AM as a calcium indicator to show that misoprostol alters intracellular calcium levels in mouse neuroblastoma (Neuro-2a) cells via similar mechanisms as PGE(2). We demonstrate that the misoprostol-induced increase in calcium is mediated by a protein kinase A (PKA)-dependent mechanism and that the EP4 receptor signaling pathway may play an inhibitory role on calcium regulation. Overall, this study provides further support for the involvement of PGE(2) signaling in calcium homeostasis and suggests its important role in the nervous system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2010.07.112DOI Listing

Publication Analysis

Top Keywords

nervous system
12
intracellular calcium
8
neuro-2a cells
8
protein kinase
8
calcium
7
misoprostol
4
misoprostol elevates
4
elevates intracellular
4
calcium neuro-2a
4
cells protein
4

Similar Publications

Introduction: Central nervous system (CNS) infections represent some of the most critical pediatric health challenges, characterized by high mortality rates and a notable risk of long-term complications. Despite their significance, standardized guidelines for endocrinological follow-up of CNS infection survivors are lacking, leading to reliance on the expertise of individual centers and clinicians.

Materials And Methods: Prospective monocentric observational study conducted at the Fondazione Policlinico Universitario Agostino Gemelli in Rome, Italy.

View Article and Find Full Text PDF

Background: Patients with multiple sclerosis (MS) experience difficulties in understanding speech in noise despite having normal hearing.

Aim: This study aimed to determine the relationship between speech discrimination in noise (SDN) and medial olivocochlear reflex levels and to compare MS patients with a control group.

Material And Methods: Sixty participants with normal hearing, comprising 30 MS patients and 30 healthy controls, were included.

View Article and Find Full Text PDF

Background And Objectives: Cerebrovascular reactivity (CVR) represents the ability of cerebral blood vessels to regulate blood flow in response to vasoactive stimuli and is related to cognition in cerebrovascular and neurodegenerative conditions. However, few studies have examined CVR in the medial temporal lobe, known to be affected early in Alzheimer disease and to influence memory function. We aimed to examine whether medial temporal CVR is associated with memory function in older adults with and without mild cognitive impairment (MCI).

View Article and Find Full Text PDF

The central nervous system (CNS) tumor with embryonal tumors type is a rare type of CNS tumor with lack of unifying genetic alterations or diagnostic markers. The CNS tumor-embryonal tumors (CETs) have limited therapeutic options with high probability of adverse events associated with conventional treatment. Identification of somatostatin receptor expression and/or prostate-specific membrane antigen expression in CET patients by using PET/CT imaging may be helpful for deciding therapeutic approaches in these patients as theranostics.

View Article and Find Full Text PDF

Site-Specific Molecular Engineering of Nanobody-Glucoside Conjugates for Enhanced Brain Tumor Targeting.

Bioconjug Chem

January 2025

Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.

Nanobodies play an increasingly prominent role in cancer imaging and therapy. However, their efficacy is often constrained by inadequate tumor penetration and rapid clearance from the bloodstream, particularly in brain tumors due to the intractable blood-brain barrier (BBB). Glycosylation is a favorable strategy for modulating the biological functions of nanobodies, including permeability and pharmacokinetics, but it also leads to heterogeneous glycan structures, which affect the targeting ability, stability, and quality of nanobodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!