Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To evaluate the feasibility of time-resolved flow-sensitive MRI for the three-dimensional (3D) visualization and quantification of normal and pathological portal venous (PV) hemodynamics.
Materials And Methods: Portal venous hemodynamics were evaluated in 18 healthy volunteers and 5 patients with liver cirrhosis. ECG- and adaptive respiratory navigator gated flow-sensitive 4D MRI (time-resolved 3D MRI with three-directional velocity encoding) was performed on a 3 Tesla MR system (TRIO, Siemens, Germany). Qualitative flow analysis was achieved using 3D streamlines and time-resolved particle traces originating from seven emitter planes precisely placed at anatomical landmarks in the PV system. Quantitative analysis included retrospective extraction of regional peak and mean velocities and vessel area. Results were compared with standard 2D flow-sensitive MRI and to the reference standard Doppler ultrasound.
Results: Qualitative flow analysis was successfully used in the entire PV system. Venous hemodynamics in all major branches in 17 of 18 volunteers and 3 of 5 patients were reliably depicted with good interobserver agreement (kappa = 0.62). Quantitative analysis revealed no significant differences and moderate agreement for peak velocities between 3D MR and 2D MRI (r = 0.46) and Doppler ultrasound (US) (r = 0.35) and for mean velocities between 3D and 2D MRI (r = 0.41). The PV area was significantly (P < 0.01) higher in 3D and 2D MRI compared with US.
Conclusion: We successfully applied 3D MR velocity mapping in the PV system, providing a detailed qualitative and quantitative analysis of normal and pathological hemodynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmri.22248 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!