Three cotton homeobox genes are preferentially expressed during early seedling development and in response to phytohormone signaling.

Plant Cell Rep

Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, HuaZhong Normal University, Wuhan 430079, China.

Published: October 2010

AI Article Synopsis

  • Homeodomain-leucine zipper (HD-Zip) proteins are transcription factors found only in plants, and this study isolated three specific cDNAs (GhHB2, GhHB3, GhHB4) from cotton that code for these proteins.
  • The proteins vary in size, with GhHB2 at 300 amino acids, GhHB3 at 254 amino acids, and GhHB4 at 281 amino acids, and share similarities with other plant HD-Zip proteins.
  • Their expression levels vary by tissue, being highly present in young stems and specific to root, hypocotyl, and cotyledon regions especially after treatments with gibberellin (GA) and 6-benzyladenine (6-BA

Article Abstract

Homeodomain-leucine zipper (HD-Zip) proteins are transcription factors unique to plants. In this study, three cDNAs (designated as GhHB2, GhHB3 and GhHB4) encoding HD-Zip proteins were isolated from cotton cDNA library. GhHB2 gene encodes a protein of 300 amino acids, GhHB3 gene encodes a peptide with 254 amino acids, and GhHB4 gene encodes a protein of 281 amino acids. The deduced proteins, which contain the homeodomain and leucine-rich zipper motif, share relatively high similarities with the other plant HD-Zip proteins. Quantitative RT-PCR analysis indicated that GhHB3 and GhHB4 were preferentially expressed in hypocotyls and cotyledons, whereas GhHB2 gene was predominantly expressed in young stems, at relatively high levels in hypocotyls. Expressions of all the three genes were up-regulated in roots, hypocotyls and cotyledons after GA(3) treatments. Additionally, GhHB4 expression was enhanced by 6-BA treatment. A GhHB2 promoter fragment was isolated from cotton by Genome-Walking PCR. Expression of GUS gene controlled under GhHB2 promoter was examined in the transgenic Arabidopsis plants. Strong GUS staining was detected in cotyledon, veins of the emerging leaves and shoot apices of 5- to 15-day-old transgenic seedlings, but GUS activity became more and more weak as the seedlings further developed. In addition, the promoter activity was induced by exogenous GA, indicating that GhHB2 promoter is very active during early seedling development, and may be GA-inducible. The results suggested that the three HB genes may function in early seedling development of cotton and in response to gibberellin signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-010-0901-1DOI Listing

Publication Analysis

Top Keywords

early seedling
12
seedling development
12
hd-zip proteins
12
gene encodes
12
amino acids
12
ghhb2 promoter
12
preferentially expressed
8
ghhb3 ghhb4
8
isolated cotton
8
ghhb2 gene
8

Similar Publications

Proteome changes during the germination and early seedling development of carnauba palm (Copernicia prunifera) under skotomorphogenic conditions.

J Proteomics

January 2025

Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Ceará, Fortaleza, Brazil. Electronic address:

We analyze the proteome changes during the development of the carnauba palm (Copernicia prunifera) seedlings under skotomorphogenic conditions, by separating the embryo into its two components: haustorium (HA) and cotyledonary petiole (CP) and established the descriptive and quantitative proteomes of these tissues across four developmental stages. 5205 proteins were identified in HA and 6028 in CP. These proteomes are rich in proteins known to maintain the skotomorphogenic state, and in a complete set of proteins involved in cellular respiration and biosynthesis of secondary metabolites.

View Article and Find Full Text PDF

Exploring the Role of Carbon Monoxide in Seed Physiology: Implications for Stress Tolerance and Practical Uses.

Int J Mol Sci

December 2024

Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.

Carbon monoxide (CO) is recognized as a signaling molecule in plants, inducing various physiological responses. This article briefly examines the physiological functions of CO in seed biology and seedlings' responses to environmental stresses. The activity of heme oxygenase (HO), the main enzyme responsible for CO synthesis, is a key factor controlling CO levels in plant cells.

View Article and Find Full Text PDF

Wheat () is grown on more arable acreage than any other food crop and has been well documented to produce allelochemicals. Wheat allelochemicals include numerous benzoxazinoids and their microbially transformed metabolites that actively suppress growth of weed seedlings. Production and subsequent release of these metabolites by commercial wheat cultivars, however, has not yet been targeted by focussed breeding programmes seeking to develop more competitive crops.

View Article and Find Full Text PDF

Drought stress can adversely affect the seed germination and seedling growth of wheat plants. This study analyzed the effect of drought on seed germination and the morphological parameters of seedlings from ten winter wheat genotypes. The primary focus was to elucidate the effects of two drought intensities on metabolic status in wheat seedlings.

View Article and Find Full Text PDF

Trees growing in urban areas face increasing stress from atmospheric pollutants, with limited attention given to the early responses of young seedlings. This study aimed to address the knowledge gap regarding the effects of simulated pollutant exposure, specifically particulate matter (PM), elevated ozone (O), and carbon dioxide (CO) concentrations, on young seedlings of five tree species: Scots pine ( L.); Norway spruce ( (L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!