A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

New insights in the formation of silanol defects in silicalite-1 by water intrusion under high pressure. | LitMetric

New insights in the formation of silanol defects in silicalite-1 by water intrusion under high pressure.

Phys Chem Chem Phys

Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 5209 CNRS, Université de Bourgogne, 9 Av. A. Savary, BP 47870, F-21078 Dijon, France.

Published: October 2010

The "water-silicalite-1" system is known to act as a molecular spring. The successive intrusion-extrusion cycles of liquid water in small crystallites (6 × 3 × 0.5 μm(3)) of hydrophobic silicalite-1 were studied by volumetric and calorimetric techniques. The experiments displayed a decrease of the intrusion pressure between the first intrusion-extrusion cycle and the consecutive ones, whereas the extrusion pressures remained unchanged. However, neither XRD studies nor SEM observations revealed any structural and morphological modifications of silicalite-1 at the long-range order. Such a shift in the value of the intrusion pressure after the first water intrusion-extrusion cycle is attributed to the creation of silanol groups during the first water intrusion. Detailed FTIR and solid-state NMR spectroscopic characterizations provided a molecular evidence of chemical modification of zeolite framework with the formation of local silanol defects created by the breaking of siloxane bonds.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c000931hDOI Listing

Publication Analysis

Top Keywords

silanol defects
8
water intrusion
8
intrusion pressure
8
intrusion-extrusion cycle
8
insights formation
4
formation silanol
4
defects silicalite-1
4
water
4
silicalite-1 water
4
intrusion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!