7SK snRNA, an abundant RNA discovered in human nucleus, regulates transcription by RNA polymerase II (RNAPII). It sequesters and inhibits the transcription elongation factor P-TEFb which, by phosphorylation of RNAPII, switches transcription from initiation to processive elongation and relieves pauses of transcription. This regulation process depends on the association between 7SK and a HEXIM protein, neither isolated partner being able to inhibit P-TEFb alone. In this work, we used a combined NMR and biochemical approach to determine 7SK and HEXIM1 elements that define their binding properties. Our results demonstrate that a repeated GAUC motif located in the upper part of a hairpin on the 5'-end of 7SK is essential for specific HEXIM1 recognition. Binding of a peptide comprising the HEXIM Arginine Rich Motif (ARM) induces an opening of the GAUC motif and stabilization of an internal loop. A conserved proline-serine sequence in the middle of the ARM is shown to be essential for the binding specificity and the conformational change of the RNA. This work provides evidences for a recognition mechanism involving a first event of induced fit, suggesting that 7SK plasticity is involved in the transcription regulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2995076 | PMC |
http://dx.doi.org/10.1093/nar/gkq660 | DOI Listing |
Nucleic Acids Res
January 2020
Laboratoire CiTCoM, CNRS UMR 8038, Université de Paris, 4 Avenue de l'observatoire, 75270 Paris, France.
7SK RNA, as part of the 7SK ribonucleoprotein complex, is crucial to the regulation of transcription by RNA-polymerase II, via its interaction with the positive transcription elongation factor P-TEFb. The interaction is induced by binding of the protein HEXIM to the 5' hairpin (HP1) of 7SK RNA. Four distinct structural models have been obtained experimentally for HP1.
View Article and Find Full Text PDFNucleic Acids Res
June 2017
Biochemistry Department, University of Iowa, Iowa City, IA 52242, USA.
The 7SK small nuclear ribonucleoprotein (snRNP) plays a central role in RNA polymerase II elongation control by regulating the availability of active P-TEFb. We optimized conditions for analyzing 7SK RNA by SHAPE and demonstrated a hysteretic effect of magnesium on 7SK folding dynamics including a 7SK GAUC motif switch. We also found evidence that the 5΄ end pairs alternatively with two different regions of 7SK giving rise to open and closed forms that dictate the state of the 7SK motif.
View Article and Find Full Text PDFRNA
December 2016
Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, Université de Strasbourg, 67404 Illkirch Cedex, France.
The small nuclear 7SK RNA regulates RNA polymerase II (RNA Pol II) transcription, by sequestering and inhibiting the positive transcription elongation factor b (P-TEFb). P-TEFb is stored in the 7SK ribonucleoprotein (RNP) that contains the three nuclear proteins Hexim1, LaRP7, and MePCE. P-TEFb interacts with the protein Hexim1 and the 7SK RNA.
View Article and Find Full Text PDFNucleic Acids Res
November 2010
IGBMC, BP10142, 1 rue Laurent Fries, 67404 Illkirch Cedex, France.
7SK snRNA, an abundant RNA discovered in human nucleus, regulates transcription by RNA polymerase II (RNAPII). It sequesters and inhibits the transcription elongation factor P-TEFb which, by phosphorylation of RNAPII, switches transcription from initiation to processive elongation and relieves pauses of transcription. This regulation process depends on the association between 7SK and a HEXIM protein, neither isolated partner being able to inhibit P-TEFb alone.
View Article and Find Full Text PDFJ Biol Chem
April 2002
Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
To study the recognition by tryptophanyl-tRNA synthetase (TrpRS) of tRNA(Trp) discriminator base, mutations were introduced into the discriminator base of Bacillus subtilis, Archeoglobus fulgidus, and bovine tRNA(Trp), representing the three biological domains. When B. subtilis, A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!