This work focused on kinetic, equilibrium and thermodynamic studies on aluminum biosorption by Streptomyces rimosus biomass. Infrared spectroscopy analysis shows that S. rimosus present some groups: hydroxyl, methyl, carboxyl, amine, thiol and phosphate. The maximum biosorption capacity of S. rimosus biomass was found to be 11.76 mg g(-1) for the following optimum conditions: particle size, [250-560] μm, pH 4-4.25, biomass content of 25 g L(-1), agitation of 250 rpm and temperature of 25 °C. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherms at free pH (pH(i) 4) and fixed pH (pH(f) 4). Langmuir model is the most adequate. With fixed pH, the maximum biosorption capacity is enhanced from 6.62 mg g(-1) to 11.76 mg g(-1). The thermodynamic parameters (ΔG°, ΔH° and ΔS°) showed the feasibility, endothermic and spontaneous nature of the biosorption at 10-80 °C. The activation energy (Ea) was determined as 52.18 kJ mol(-1) using the Arrhenius equation and the rate constant of pseudo-second-order model (the most adequate kinetic model). The mean free energy was calculated as 12.91 kJ mol(-1) using the D-R isotherm model. The mechanism of Al(III) biosorption on S. rimosus could be a chemical ion exchange and carboxyl groups are mainly involved in this mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2010.06.078 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany.
Dynamically interconvertible metallo-supramolecular multicomponent assemblies, coexisting orthogonally in solution, serve as simplified mimics for complex networks found in biological systems. Building on recent advances in controlling the nonstatistical self-assembly of heteroleptic coordination cages and heteromeric completive self-sorting, i.e.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Cardiff University, School of Chemistry, Park Place, Main Building, CF10 3AT, Cardiff, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Despite the remarkable advancements in hypervalent iodine chemistry, exploration of bromine and chlorine analogues remains in its infancy due to their difficult synthesis. Herein, we introduce six-membered cyclic λ3-bromanes and λ3-chloranes. Through single-crystal X-ray structural analyses and conformational studies, we delineate the crucial bonding patterns pivotal for the thermodynamic stability of these compounds.
View Article and Find Full Text PDFNano Lett
January 2025
Zhejiang Engineering Research Center for Tissue Repair Materials and Wenzhou Key Laboratory of Biomaterials and Engineering and Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.
Saccharides and peptides with markedly disparate stereochemical features serve as pivotal chiral molecular partners in living systems. The importance of glycosylation in influencing glycopeptide self-assembly has been recognized. However, how different chiral combinations of saccharides and peptides influence the macroscopic hydrogel mechanics, fiber nanomechanics, asymmetric molecular packing, and thermodynamic changes during glycopeptide self-assembly remains unknown.
View Article and Find Full Text PDFJ Chem Eng Data
January 2025
Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy.
Deep eutectic solvents (DESs) have recently gained attention due to their tailorable properties and versatile applications in several fields, including green chemistry, pharmaceuticals, and energy storage. Their tunable properties can be enhanced by mixing DESs with cosolvents such as ethanol, acetonitrile, and water. DESs are structurally complex, and molecular modeling techniques, including quantum mechanical calculations and molecular dynamics simulations, play a crucial role in understanding their intricate behavior when mixed with cosolvents.
View Article and Find Full Text PDFPeerJ
January 2025
Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico.
Heterogeneous environments provide different daily and seasonal thermal conditions for snakes, resulting in temporal and spatial variations in body temperature (Tb). This study analyzes the Tb of in the forest and grassland of a Mexican locality through daily and seasonal profiling. The patterns were obtained from seminatural enclosures in the field with a point sampling strategy to analyze temporal and spatial variations in Tb.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!