Dietary protein might modulate mucin flow and intestinal mucin gene expression. Since unheated phaseolin from Phaseolus vulgaris bean is resistant to digestion and increases gut endogenous protein losses, we hypothesised that unheated phaseolin influences mucin flow and gene expression, and that phaseolin heat treatment reverses these effects. The hypothesis was tested using a control diet containing casein as the sole protein source and three other diets with casein being replaced by 33 and 67 % of unheated and 67 % of heated phaseolin. The rats were fed for 6 d and euthanised. Digesta and faeces were collected for determining digestibility and mucin flow. Gut tissues were collected for mucin (Muc1, Muc2, Muc3 and Muc4) and Trefoil factor 3 (Tff3) gene expressions. Colonic mucin flow decreased linearly with increasing the dietary level of unheated phaseolin (P < 0·05). Unheated phaseolin increased N flow in ileum, colon and faeces (P < 0·05), and reduced apparent N digestibility linearly (P < 0·01). Heat treatment reversed all these changes (P < 0·05 to < 0·001), except mucin flow. The expressions of Muc mRNA in gut tissues were influenced by dietary phaseolin level (ileum and colon: Muc3 and Muc4) and thermal treatment (ileum: Muc2; colon: Muc2, Muc3, Muc4 and Tff3) (P < 0·05 to 0·001). In conclusion, phaseolin modulates mucin flow and Muc gene expression along the intestines differentially.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0007114510002813DOI Listing

Publication Analysis

Top Keywords

mucin flow
28
gene expression
16
unheated phaseolin
16
muc3 muc4
12
phaseolin
9
mucin
9
phaseolin phaseolus
8
phaseolus vulgaris
8
vulgaris bean
8
flow
8

Similar Publications

Mucus is composed of a complex network of mucin polymers connected by disulfide bonds. In muco-obstructive diseases, an increase in mucin disulfide crosslinks contributes to pathologic mucus formation, characterized by an increase in mucus viscosity and stiffness. Reducing agents that break down the disulfide bonds between mucins can be used to treat pathologic mucus and restore healthy mucus flow properties.

View Article and Find Full Text PDF

AIE nanoparticle with enhanced fluorescence for ultrasensitive lateral flow immunoassays and point-of-care diagnosis of interstitial lung disease.

Biosens Bioelectron

March 2025

School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, (CUHK-Shenzhen), Guangdong, 518172, China.

Krebs von den Lungen-6 (KL-6) has been recognized as an effective serum biomarker for interstitial lung disease (ILD). The KL-6 accurate detection is of great significance for evaluating the severity of ILD and the prognosis of patients. In this study, a bright aggregation-induced emission luminogen (AIEgen) N, N'-((1,2-diphenylethene-1,2-diyl)bis(4,1-phenylene))bis(N-phenylnaphthalen-1-amine) (TPETN) with a high quantum yield of 87.

View Article and Find Full Text PDF

Intestinal stem cell-derived extracellular vesicles ameliorate necrotizing enterocolitis injury.

Mol Cell Probes

December 2024

Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Birth Defects, Children's Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China. Electronic address:

The therapeutic potential of intestinal stem cell-derived extracellular vesicles (ISCs-EVs) in necrotizing enterocolitis (NEC) remains largely unexplored. This research aims to investigate the therapeutic effects of ISCs-EVs on NEC. Lgr5-positive ISCs were screened from the small intestine of mice by flow cytometry, and ISCs-EVs were isolated by density gradient centrifugation.

View Article and Find Full Text PDF

A review on the mucus dynamics in the human respiratory airway.

Biomech Model Mechanobiol

November 2024

School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

Research interest in the dynamics of respiratory flow and mucus has significantly increased in recent years with important contributions from various disciplines such as pulmonary and critical care medicine, surgery, physiology, environmental health sciences, biophysics, and engineering. Different areas of engineering, including mechanical, chemical, civil/environmental, aerospace, and biomedical engineering, have longstanding connections with respiratory research. This review draws on a wide range of scientific literature that reflects the diverse audience and interests in respiratory science.

View Article and Find Full Text PDF

Background: IFN-γ+CD4+ cells (type 1 helper T cells, Th1) represent a critical component of the inflammatory environment in the lungs of chronic obstructive pulmonary disease (COPD). Identifying influencing factors related to COPD-associated Th1 cells will enhance our understanding of the inflammatory mechanisms involved and facilitate the development of targeted interventions.

Method: We describe T-cell immunoglobulin and mucin-domain containing-3 (Tim3) as a key gene regulating COPD-associated Th1 cells through single-cell sequencing, flow cytometry and knockout mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!