A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Proliferation and differentiation of mesenchymal stem cell on collagen sponge reinforced with polypropylene/polyethylene terephthalate blend fibers. | LitMetric

Although tissue-engineered scaffolds made from collagen sponge are suitable for cell infiltrating, easily supplying oxygen and nutrients to cells, and removing the waste products, their mechanical properties are not satisfactory to be used as scaffold materials for tissue engineering applications. To improve mechanical properties of collagen, a novel porous scaffold for bone tissue engineering was prepared with collagen sponge reinforced by polypropylene/polyethylene terephthalate (PP/PET) fibers. Collagen solution (6.33 mg/mL) with PP/PET fibers (collagen/fiber ratio [w/w]: 1.27, 0.63, 0.42, 0.25) was freeze-dried, followed by cross-linking of combined dehydrothermal and glutaraldehyde. A scanning electron microscopy-based analysis of surface of the sponges demonstrated that the sponge with collagen/fiber <0.25 exhibited homogenous and interconnected pore structure with an average pore size of 200 μm. Incorporation of PP/PET fibers significantly enhanced the compressive strength of the collagen sponge. Proliferation and osteogenic differentiation of mesenchymal stem cell in collagen sponges reinforced with PP/PET fibers incorporation were significantly enhanced compared with collagen sponge without PP/PET incorporation. We conclude that incorporation of PP/PET fibers not only improves the mechanical properties of collagen sponge, but also enables mesenchymal stem cells to positively improve their proliferation and differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.TEA.2009.0520DOI Listing

Publication Analysis

Top Keywords

collagen sponge
12
sponge reinforced
8
reinforced polypropylene/polyethylene
8
polypropylene/polyethylene terephthalate
8
mechanical properties
8
tissue engineering
8
pp/pet fibers
8
collagen
5
proliferation differentiation
4
differentiation mesenchymal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!