Adipose-derived stem cells (ASCs) have been proposed to stabilize autologous fat grafts for regenerative therapy, but their safety is unknown in the setting of reconstructive surgery after mastectomy. Both bone marrow mesenchymal stem cells (MSCs) and ASC have been shown to enhance tumorigenesis of established breast cancer cell lines, but primary patient material has not been tested. Here, we ask whether ASC promote the in vitro growth and in vivo tumorigenesis of metastatic breast cancer clinical isolates. Metastatic pleural effusion (MPE) cells were used for coculture experiments. ASC enhanced the proliferation of MPE cells in vitro (5.1-fold). For xenograft experiments (100 sorted cells/injection site), nonhematopoietic MPE cells were sorted into resting and active populations: CD90+ resting (low scatter, 2.1%≥2N DNA), CD90+ active (high scatter, 10.6%≥2N DNA), and CD90-. Resting CD90+ MPE cells were tumorigenic in 4/40 sites but growth was not augmented by ASC. Active CD90+ MPE cells were tumorigenic (17/40 sites) only when coinjected with ASC (p=0.0005, χ2 test). The multilineage potentiality and MSC-like immunophenotype of ASC were confirmed by flow cytometry, differentiation cultures, and immunostaining. The secretome profile of ASC resembled that reported for MSC, but included adipose-associated adipsin and the hormone leptin, shown to promote breast cancer growth. Our data indicate that ASC enhance the growth of active, but not resting tumor cells. Thus, reconstructive therapy utilizing ASC-augmented whole fat should be postponed until there is no evidence of active disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3011910PMC
http://dx.doi.org/10.1089/ten.TEA.2010.0248DOI Listing

Publication Analysis

Top Keywords

mpe cells
20
breast cancer
16
stem cells
12
cells
10
regenerative therapy
8
adipose-derived stem
8
clinical isolates
8
asc
8
asc enhance
8
cd90+ mpe
8

Similar Publications

Background: Microsatellite instability-high (MSI-high) tumors comprise ~15% of sporadic colorectal cancers (CRC) and are associated with elevated T cell infiltration. However, the universality of this response across T cell subtypes with distinct functions is unknown.

Methods: Including 1,236 CRC tumors from three observational studies, we conducted T cell profiling using a customized 9-plex (CD3, CD4, CD8, CD45RA, CD45RO, FOXP3, KRT, MKI67, and DAPI) multispectral immunofluorescence assay.

View Article and Find Full Text PDF

Introduction: Macrophage-inducible C-type lectin (Mincle) has emerged as a potential contributor to neuropathic pain induction and neuroinflammatory responses within the spinal cord. Moreover, evidence suggests a close association between toll-like receptor (TLR) and Mincle expression in myeloid cells. This study evaluated the effectiveness of Mincle antibodies in neuropathic pain and identified the epitope of these antibodies.

View Article and Find Full Text PDF

Background: Although tumor necrosis factor receptor 2 (TNFR2) has been recognized as an attractive next-generation candidate target for cancer immunotherapy, the factors that regulate the gene expression and their mechanistic effects on tumor-infiltrating regulatory T cells (Treg cells) remain poorly understood.

Methods: Single-cell RNA sequencing analysis was employed to analyze the phenotypic and functional differences between TNFR2 Treg cells and TNFR2 Treg cells. Malignant pleural effusion (MPE) from humans and mouse was used to investigate the potential mechanisms by which lactate regulates TNFR2 expression.

View Article and Find Full Text PDF

Aim: This study focuses on the design and investigation a transethosomal formulation for enhanced topical delivery and improved analgesic activity of caryophyllene oxide. In addition, this work explores new potential mechanisms of analgesic activity of the active compound including alpha-amino-3-hydroxy-5-methyl-4-isooxazole-propionic acid (AMPA) and Cyclooxygenase 2 (COX-2).

Methods: The transethosomal system containing various caryophyllene concentrations was prepared.

View Article and Find Full Text PDF

Complement C1q is a key player in tumor-associated macrophage-mediated CD8 T cell and NK cell dysfunction in malignant pleural effusion.

Int J Biol Sci

December 2024

Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.

Macrophages play a crucial role in malignant pleural effusion (MPE), a frequent complication of advanced cancer. While C1q macrophages have been identified as a pro-tumoral cluster, direct evidence supporting the role of C1q-mediated macrophages remains to be elucidated. This study employed global and macrophage-specific knockout mice to investigate the role of C1q in MPE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!