The feasibility of using a retailer fidelity card scheme to estimate food additive intake was investigated using the Swiss retailer MIGROS's Cumulus Card and the example of the food colour Sunset Yellow (E 110). Information held within the card scheme was used to identify a sample of households purchasing foods containing Sunset Yellow over a 15 day period. A sample of 1204 households was selected for interview, of which 830 households were retained in the study following interview. Interviews were conducted to establish household structure, patterns of consumption by different individuals within the household, and the proportion of foods containing Sunset Yellow habitually purchased at the retailer and/or consumed outside the home. Information provided by the retailer on levels of Sunset Yellow in the foods was combined with the information obtained at interview to calculate the per-capita intake of Sunset Yellow by members of participating households. More than 99% of consumers (n = 1902) of foods containing Sunset Yellow were estimated to consume less than 1 mg Sunset Yellow kg(-1) body weight day(-1). The method proved to be a simple and resource-efficient approach to estimate food additive intake on the basis of actual consumer behaviour and thus reports results more closely related to the actual consumption of foods by individuals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/19440049.2010.495728 | DOI Listing |
Int J Biol Macromol
January 2025
Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco. Electronic address:
This research explores the biosorption of Rhodamine B (Rd-B) and Sunset Yellow (SY) dyes using cross-linked chitosan-alginate (Ch-A) biocomposite beads, combining experimental investigations with theoretical studies to elucidate the biosorption mechanisms. The biocomposite beads were synthesized through an eco-friendly cross-linking method, and their structural properties were characterized using various characterization techniques. Complementary theoretical studies using Monte Carlo (MC) simulations and molecular dynamics (MD) calculations provided insights into the molecular interactions between the dyes and the biocomposite beads.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Faculty of Science, Ege University, Bornova, Izmir 35040, Türkiye. Electronic address:
This study showcases the remarkable efficacy of quaternary ammonium-modified cellulose as a highly sustainable biosorbent for removing Sunset Yellow (SY) dye from water. Detailed analysis was conducted using infrared (FTIR) spectroscopy for structural changes and Scanning Electron Microscopy (SEM) for morphological changes. A minimal yet highly effective dose of 0.
View Article and Find Full Text PDFFood Chem
December 2024
Department of chemistry, University of Science and Technology, Tehran, Iran.
Azo dyes, such as tartrazine and sunset yellow, are widely used as affordable and stable food colorants. Accurate quantification is crucial in foods for regulatory monitoring to ensure compliance with safety standards and minimize health risks. This study developed a low-cost and eco-friendly method using digital images and chemometrics for the simultaneous determination of these dyes in food samples.
View Article and Find Full Text PDFLuminescence
December 2024
Department of Physics, Veer Surendra Sai University of Technology, Sambalpur, Odisha, India.
A fast and highly sensitive electrochemical sensor (ECS) is crucially desirable for observing synthetic dyes in foodstuffs, as excessive consumption of these colorants can pose risks to human health, including toxicity and pathogenicity. This research introduces the creation of an ECS comprising a CuO-ZrO nanocomposite for detecting Sunset Yellow (SY) dye in beverage and food items. The synthesized CuO-ZrO material underwent thorough characterization using various physicochemical and electroanalytical methods.
View Article and Find Full Text PDFFood Res Int
January 2025
State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China. Electronic address:
Colorant adulteration is a common problem in tea safety control; thus, a rapid identification method is required. In this study, we optimized the fabrication parameters of various sensors to enhance their performance. R6G was used as a probe molecule, demonstrating that the sensnor remained stable for 120 days.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!