In this work, the absorption coefficient of a metallic photonic crystal doped with nanoparticles has been obtained using numerical simulation techniques. The effects of quantum interference and the concentration of doped particles on the absorption coefficient of the system have been investigated. The nanoparticles have been considered as semiconductor quantum dots which behave as a four-level quantum system and are driven by a single coherent laser field. The results show that changing the position of the photonic band gap about the resonant energy of the two lower levels directly affects the decay rate, and the system can be switched between transparent and opaque states if the probe laser field is tuned to the resonance frequency. These results provide an application for metallic nanostructures in the fabrication of new optical switches and photonic devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2894239 | PMC |
http://dx.doi.org/10.1007/s11671-009-9517-1 | DOI Listing |
Chemistry
December 2024
School of Materials Science and Technology, China University of Geosciences, Beijing, 10083, China.
Investigating the correlation between metal coordination and molecular conductivity in single-molecule systems is essential for advancing our knowledge of molecular electronics, particularly in the realm of spintronics. In the present study, we developed two complex wires utilizing the bipyridine ligand and two transition metal ions, Co and Zn, aiming to study the impact of different spin characters on single-molecule charge transport properties. Single-molecule conductance was investigated using scanning tunnelling microscope breaking junctions (STM-BJ) technique and the underlying mechanism was analysed by density functional theory (DFT) calculations.
View Article and Find Full Text PDFNanoscale Adv
January 2025
School of Electrical Engineering and Computer Science, University of Ottawa Ottawa Ontario K1N 6N5 Canada
Interference of surface plasmons has been widely utilized in optical metrology for applications such as high-precision sensing. In this paper, we introduce a surface plasmon interferometer with the potential to be arranged in arrays for parallel multiplexing applications. The interferometer features two grating couplers that excite surface plasmon polariton (SPP) waves traveling along a gold-air interface before converging at a gold nanoslit where they interfere.
View Article and Find Full Text PDFNanoscale
January 2025
Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India.
Sub-cellular organelle anomalies are frequently observed in diseases such as cancer. Early and precise diagnosis of these alterations can be crucial for patient outcomes. However, current diagnostic tools using conventional organic dyes or metal quantum dots face limitations, including poor biocompatibility, stringent storage conditions, limited solubility in aqueous media, and slow staining speeds.
View Article and Find Full Text PDFAdv Mater
January 2025
Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
The evolution of display technologies is rapidly transitioning from traditional screens to advanced augmented reality (AR)/virtual reality (VR) and wearable devices, where quantum dots (QDs) serve as crucial pure-color emitters. While solution processing efficiently forms QD solids, challenges emerge in subsequent stages, such as layer deposition, etching, and solvent immersion. These issues become especially pronounced when developing diverse form factors, necessitating innovative patterning methods that are both reversible and sustainable.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Life Sciences, The Second Affiliated Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, PR China. Electronic address:
Background: Glioma accounts for 80 % of all malignant primary brain tumors with a high mortality rate. Histopathological examination is the current diagnostic methods for glioma, but its invasive surgical interventions can cause cerebral edema or impair neural functioning. Liquid biopsy proves to be an efficient method for glioma detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!