AI Article Synopsis

  • Cavity-enhanced single-photon emission from InGaN/GaN quantum dots was measured, showing increased efficiency in the blue spectral range.
  • Micro-reflectance spectroscopy was utilized to characterize the low-Q microcavities, with light enhancement sourced from a photonic crystal fiber.
  • Results indicated that micro-photoluminescence from the cavities was approximately 10 times stronger than standard InGaN quantum dot emission, achieved through non-linear excitation methods to reduce background noise.

Article Abstract

Cavity-enhanced single-photon emission in the blue spectral region was measured from single InGaN/GaN quantum dots. The low-Q microcavities used were characterized using micro-reflectance spectroscopy where the source was the enhanced blue output from a photonic crystal fibre. Micro-photoluminescence was observed from several cavities and found to be ~10 times stronger than typical InGaN quantum dot emission without a cavity. The measurements were performed using non-linear excitation spectroscopy in order to suppress the background emission from the underlying wetting layer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2894208PMC
http://dx.doi.org/10.1007/s11671-009-9514-4DOI Listing

Publication Analysis

Top Keywords

quantum dot
8
dot emission
8
emission blue
8
cavity enhancement
4
enhancement single
4
single quantum
4
emission
4
blue cavity-enhanced
4
cavity-enhanced single-photon
4
single-photon emission
4

Similar Publications

Structural and photoelectric properties of p-i-n photodiodes based on GeSiSn/Si multiple quantum dots both on Si and silicon-on-insulator (SOI) substrates were investigated. Elastic strained state of grown films was demonstrated by x-ray diffractometry. Annealing of p-i-n structures before the mesa fabrication can improve the ideality factor of current-voltage characteristics.

View Article and Find Full Text PDF

Electropositive Magnetic Fluorescent Nanoprobe-Mediated Immunochromatographic Assay for the Ultrasensitive and Simultaneous Detection of Bacteria.

Adv Sci (Weinh)

January 2025

Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China.

Immunochromatographic assays (ICAs) provide simple and rapid strategies for bacterial diagnosis but still suffer from the problems of low sensitivity and high dependency on paired antibodies. Herein, the broad-spectrum capture and detection capability of the antibody-free electropositive nanoprobe are clarified for bacteria for the first time and an ultrasensitive fluorescent ICA platform is constructed for the simultaneous diagnosis of multiple pathogens. A magnetic multilayer quantum dot nanocomposite with an amino-embedded SiO shell (MagMQD@Si) is designed to enrich bacteria from solutions effectively, offer high luminescence, and reduce background signals on test strips, thus greatly improving the sensitivity and stability of ICA technique for pathogen.

View Article and Find Full Text PDF

Microorganisms serve as biological factories for the synthesis of nanomaterials such as CdS quantum dots. Based on the uniqueness of sp., a one-step route was explored to directly convert cadmium waste into CdS QDs using these bacteria.

View Article and Find Full Text PDF

Performance enhancement of InSnZnO thin-film transistors by modifying the dielectric-semiconductor interface with colloidal quantum dots.

Nanoscale Adv

December 2024

Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 China

Thin film transistors (TFTs) with InSnZnO (ITZO) and AlO as the semiconductor and dielectric layers, respectively, were investigated, aiming to elevate the device performance. Chemically synthesized CuInS/ZnS core/shell colloidal quantum dots (QDs) were used to passivate the semiconductor/dielectric interface. Compared with the pristine device, the device with the integrated QDs demonstrates remarkably improved electrical performance, including a higher electron mobility and a lower leakage current.

View Article and Find Full Text PDF

Polymer-dispersed liquid crystals (PDLCs) stand at the intersection of polymer science and liquid crystal technology, offering a unique blend of optical versatility and mechanical durability. These composite materials are composed of droplets of liquid crystals interspersed in a matrix of polymeric materials, harnessing the optical properties of liquid crystals while benefiting from the structural integrity of polymers. The responsiveness of LCs combined with the mechanical rigidity of polymers make polymer/LC composites-where the polymer network or matrix is used to stabilize and modify the LC phase-extremely important for scientists developing novel adaptive optical devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!