High-yield synthesis of TiO(2) one-dimensional (1D) nanostructures was realized by a simple annealing of Ni-coated Ti grids in an argon atmosphere at 950 degrees C and 760 torr. The as-synthesized 1D nanostructures were single crystalline rutile TiO(2) with the preferred growth direction close to [210]. The growth of these nanostructures was enhanced by using catalytic materials, higher reaction temperature, and longer reaction time. Nanoscale tensile testing performed on individual 1D nanostructures showed that the nanostructures appeared to fracture in a brittle manner. The measured Young's modulus and fracture strength are ~56.3 and 1.4 GPa, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2894257 | PMC |
http://dx.doi.org/10.1007/s11671-009-9485-5 | DOI Listing |
Molecules
January 2025
College of Computer Science and Cyber Security (Pilot Software College), Chengdu University of Technology, Chengdu 610059, China.
The photocatalytic oxidative coupling of methane (OCM) on metal-loaded one-dimensional TiO nanowires (TiO NWs) was performed. With metal loading, the electric and optical properties of TiO NWs were adjusted, contributing to the improvement of the activity and selectivity of the OCM reaction. In the photocatalytic OCM reaction, the 1.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Material Science and Engineering, Drexel University, Philadelphia 19104, Pennsylvania, United States.
The optimization of nonradiative recombination losses through interface engineering is key to the development of efficient, stable, and hysteresis-free perovskite solar cells (PSCs). In this study, for the first time in solar cell technology, we present a novel approach to interface modification by employing one-dimensional lepidocrocite (henceforth referred to as 1DL) TiO-based nanofilaments, NFs, between the mesoporous TiO (mp TiO) and halide perovskite film in PSCs to improve both the efficiency and stability of the devices. The 1DLs can be easily produced on the kilogram scale starting with cheap and earth-abundant precursor powders, such as TiC, TiN, TiB, etc.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.
The solar sector is shifting towards lead-free, inorganic cubic halide perovskites due to their superior structural, electronic, and optoelectronic properties. This study uses density functional theory (DFT) to examine the structural, electronic, and optical properties of XSnBr (X = Cs, Rb, K, Na) and assesses their photovoltaic performance through the Solar Cell Capacitance Simulator - One Dimensional (SCAPS-1D). The results show each material has a direct band gap at the Γ-point, low optical losses, and high absorption, making them promising for solar and optoelectronic applications.
View Article and Find Full Text PDFAntimony sulfide (SbS) photodetectors (PDs) possess extensive application prospects. Efficient carrier transport of a PD significantly affects the detectivity and response speed. Herein, we propose an all-inorganic self-powered SbS PD based on vertical TiO nanorods (NRs).
View Article and Find Full Text PDFNanomaterials (Basel)
October 2024
Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62512, Egypt.
In this study, we demonstrate the reflectance spectrum of one-dimensional photonic crystals comprising two different types of metamaterials. In this regard, the designed structure can act as a simple and efficient detector for fat concentrations in milk samples. Here, the hyperbolic and gyroidal metamaterials represent the two types of metamaterials that are stacked together to construct the candidate structure; meanwhile, the designed 1D PCs can be simply configured as [()].
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!