Photodetectors in a configuration of field effect transistor were fabricated based on individual W18O49 nanowires. Evaluation of electrical transport behavior indicates that the W18O49 nanowires are n-type semiconductors. The photodetectors show high sensitivity, stability and reversibility to ultraviolet (UV) light. A high photoconductive gain of 104 was obtained, and the photoconductivity is up to 60 nS upon exposure to 312 nm UV light with an intensity of 1.6 mW/cm2. Absorption of oxygen on the surface of W18O49 nanowires has a significant influence on the dark conductivity, and the ambient gas can remarkably change the conductivity of W18O49 nanowire. The results imply that W18O49 nanowires will be promising candidates for fabricating UV photodetectors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2893772 | PMC |
http://dx.doi.org/10.1007/s11671-009-9499-z | DOI Listing |
Int J Biol Macromol
January 2025
College of Chemistry and Chemical Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, College of materials science and engineering, Shandong Collaborative Innovation Center of Marine Bio-based Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, PR China.
In this experiment, we studied a technique that permits the continuous fabrication of electrochromic alginate fibers because there hasn't been much research on electrochromic alginate fibers. Therefore, it's important to investigate ways to increase the application areas of alginate fibers. AgNP‑calcium alginate fibers with high electrical conductivity were prepared by Ag substitution method.
View Article and Find Full Text PDFAdv Mater
November 2024
Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600, P. R. China.
Small
November 2024
Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
Demand for real-time detection of hydrogen and ammonia, clean energy carriers, in a sensitive and selective manner, is growing rapidly for energy, industrial, and medical applications. Nevertheless, their selective detection still remains a challenge and requires the utilization of diverse sensors, hampering the miniaturization of sensor modules. Herein, a practical approach via material design and facile temperature modulation for dual selectivity is proposed.
View Article and Find Full Text PDFNano Lett
November 2024
Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan.
Tungsten disulfide nanotubes (WS-NTs), with their cylindrical structure composed of rolled WS sheets, have attracted much interest because of their unique physical properties reflecting quasi-one-dimensional chiral structures. They exhibit a semiconducting electronic structure regardless of their chirality, and various semiconducting and optoelectronic device applications have been demonstrated. The development of techniques to fabricate arrayed WS-NTs is crucial to realizing the highest device performance.
View Article and Find Full Text PDFAdv Mater
October 2024
Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!