We studied viral evolution in five human leukocyte antigen (HLA)-B*57 patients recently infected with HIV-1. Escape mutations in HLA-B*57-restricted Gag epitopes were present at study entry in all patients, but were not associated with significant increases in viremia. Conversely, no new escape mutations in HLA-B*57-restricted epitopes or known compensatory mutations were detected in patients who experienced significant increases in viremia. Thus, the development of escape mutations alone does not determine virologic outcome in recently infected HLA-B*57 patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2941822PMC
http://dx.doi.org/10.1097/QAD.0b013e32833d8a38DOI Listing

Publication Analysis

Top Keywords

escape mutations
12
human leukocyte
8
hla-b*57 patients
8
mutations hla-b*57-restricted
8
increases viremia
8
patients
5
hiv-1 gag
4
gag evolution
4
evolution infected
4
infected human
4

Similar Publications

Post-transplant lymphoproliferative disorders (PTLD) and lymphomas in immunocompromised individuals represent significant clinical challenges, with a limited understanding of their pathogenesis. We investigated a PTLD cohort (n = 50) consisting of 'early lesions' (infectious mononucleosis-like PTLD, plasmacytic and follicular hyperplasias), polymorphic PTLD and post-transplant diffuse large B-cell lymphomas (PT-DLBCL). The study also included 15 DLBCL with autoimmune/immunocompromised backgrounds (IS-DLBCL) and 14 DLBCL, not otherwise specified (DLBCL, NOS), as control.

View Article and Find Full Text PDF

Despite all the progress in treating SARS-CoV-2, escape mutants to current therapies remain a constant concern. Promising alternative treatments for current and future coronaviruses are those that limit escape mutants by inhibiting multiple pathogenic targets, analogous to the current strategies for treating HCV and HIV. With increasing popularity and ease of manufacturing of RNA technologies for vaccines and drugs, therapeutic microRNAs represent a promising option.

View Article and Find Full Text PDF

Strategies Used by SARS-CoV-2 to Evade the Innate Immune System in an Evolutionary Perspective.

Pathogens

December 2024

Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.

By the end of 2019, the COVID-19 pandemic, resulting from the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), had diffused widely across the globe, with 770 million infected individuals and over 7 million deaths reported. In addition to its high infectivity and pathogenicity and its rapid mutation rate, the unique capacity of SARS-CoV-2 to circumvent the immune system has also contributed to the widespread nature of this pandemic. SARS-CoV-2 elicits the onset of innate immune system activation and initiates antiviral responses once it has infected the host.

View Article and Find Full Text PDF

The COVID-19 pandemic caused by the SARS-CoV-2 virus continues to circulate worldwide, causing the deaths of millions of people. The continuous circulation of the virus, its genetic diversity, the emergence of new variants with increased transmissibility, and/or the capacity of the virus to escape from the immune system constitute a major public health concern. In our study, we aimed to characterize SARS-CoV-2 strains in Iraq from the first introduction until the end of 2023, and to identify their variants, lineages, clades, and mutation patterns.

View Article and Find Full Text PDF

Environmental pollution poses a significant risk to public health, as demonstrated by the bioaccumulation of aluminum (Al) in colorectal cancer (CRC). This study aimed to investigate the potential mutagenic effect of Al bioaccumulation in CRC samples, linking it to the alteration of key mediators of cancer progression, including immune response biomarkers. Aluminum levels in 20 CRC biopsy samples were analyzed using inductively coupled plasma mass spectrometry (ICP-MS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!