Genomically imprinted genes show parentally fixed mono-allelic expression and are important for the mammalian development. Dysregulation of genomic imprinting leads to several complex pathological conditions. Though the genetic and epigenetic regulation of imprinted genes has been well studied, their protein aspects are largely ignored. Here, we systematically studied a sub-network centered on proteins encoded by imprinted genes within human interactome. Using concepts of network biology, we uncover a highly connected, transitive and central network module of imprinted gene-products and their interacting partners (IGPN). The network is enriched in development, metabolism and cell cycle related functions and its malfunctioning ascribes error intolerance to human interactome network. Further, detailed analysis revealed that its higher centrality is determined by 'date' interactions among the proteins belonging to different functional classes than the 'party' interactions within the same functional class. Interestingly, a significant proportion of this network genetically associates with disease phenotypes. Moreover, the network comprises of gene-sets that are upregulated in leukemia, psychosis, obesity/diabetes and downregulated in autism. We conclude that imprinted gene-products are part of a functionally and topologically important module of human interactome and errors in this sub-network are intolerant to, otherwise robust, human interactome. The findings might also shed light on how imprinted genes, which are rather very few, coordinate at protein level to pleiotropically regulate growth and metabolism during embryonic and post-natal development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4161/epi.5.7.12883 | DOI Listing |
Clin Genet
January 2025
Programa de Pós-graduação em Ciências da Saúde, Universidade de Brasília, Brasília, Brazil.
Silver-Russell Syndrome (SRS) is a genetic disorder characterized by intrauterine and postnatal growth restriction. Most cases are caused by an imprinting error either with hypomethylation of the Imprinted Control Region 1 at 11p15.5, or maternal uniparental disomy of chromosome 7.
View Article and Find Full Text PDFNature
January 2025
Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
Female mammalian cells have two X chromosomes, one of maternal origin and one of paternal origin. During development, one X chromosome randomly becomes inactivated. This renders either the maternal X (X) chromosome or the paternal X (X) chromosome inactive, causing X mosaicism that varies between female individuals, with some showing considerable or complete skew of the X chromosome that remains active.
View Article and Find Full Text PDFJ Endocr Soc
January 2025
Cellular and Molecular Endocrinology Laboratory LIM/25, Division of Endocrinology and Metabolism, Clinicas Hospital, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil.
Human puberty is a dynamic biological process determined by the increase in the pulsatile secretion of GnRH triggered by distinct factors not fully understood. Current knowledge reveals fine tuning between an increase in stimulatory factors and a decrease in inhibitory factors, where genetic and epigenetic factors have been indicated as key players in the regulation of puberty onset by distinct lines of evidence. Central precocious puberty (CPP) results from the premature reactivation of pulsatile secretion of GnRH.
View Article and Find Full Text PDFBiochem Soc Trans
January 2025
Centre for Plant Molecular Biology, University of Tübingen, Tübingen 72076, Germany.
Primary axis formation is the first step of embryonic patterning in flowering plants and recent findings highlight the importance of parent-of-origin effects in this process. Apical-basal patterning has a strong influence on suspensor development, an extra-embryonic organ involved in nutrient transport to the embryo at an early stage of seed development. The endosperm, a second fertilization product, nourishes the embryo at later stages of seed development.
View Article and Find Full Text PDFWorld J Pediatr
January 2025
Pediatric Endocrinology, Girona Biomedical Research Institute, Hospital Dr. JosepTrueta, 17007, Girona, Spain.
Background: The impact of Prader-Willi syndrome (PWS) domain gene expression on the growth of healthy children is not well understood. This study investigated associations between PWS domain gene expression in umbilical cord tissue and prenatal and postnatal growth, considering potential sex differences.
Methods: Relative gene expression of paternally expressed MAGEL2, NDN, and SNURF-SNRPN, and the small nucleolar RNAs SNORD116 and SNORD115 were determined by real-time quantitative polymerase chain reaction in umbilical cord tissue from 122 healthy newborns (59 girls and 63 boys).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!