A model of irradiated cell survival based on rigorous accounting of microdosimetric effects is developed. The model does not assume that the distribution of lesions is Poisson and is applicable to low, intermediate and high acute doses of low or high LET radiation. For small doses, the model produces the linear-quadratic (LQ) model. However, for high doses the best-fitting LQ model grossly underestimates cell survival. The same is also true for the conventional LQ model, only more so. It is shown that for high doses, the microdosimetric distribution can be approximated by a Gaussian distribution, and the corresponding cell survival probabilities are compared.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0031-9155/55/16/005 | DOI Listing |
Jpn J Clin Oncol
January 2025
Department of Otorhinolaryngology, Head and Neck Surgery, Yokohama City University, School of Medicine, Yokohama, Japan.
The prognosis for T2N0 glottic squamous cell carcinoma (SCC) is generally favorable, with a 5-year overall survival rate of 79%-96% achieved with radiotherapy (RT), the standard nonsurgical treatment for this condition. However, the local control rate for T2N0 glottic SCC treated with RT remains suboptimal, with a 5-year local control rate of only 65%-80%. Local residual disease or recurrence following RT for T2N0 glottic SCC often leads to difficulties in laryngeal preservation.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China.
This study aims to investigate the expression of seven cancer testis antigens (MAGE-A1, MAGE-A4, MAGE-A10, MAGE-A11, PRAME, NY-ESO-1 and KK-LC-1) in pan squamous cell carcinoma and their prognostic value, thus assessing the potential of these CTAs as immunotherapeutic targets. The protein expression of these CTAs was evaluated by immunohistochemistry in 60 lung squamous cell carcinoma (LUSC), 62 esophageal squamous cell carcinoma (ESCA) and 62 head and neck squamous cell carcinoma (HNSC). The relationship between CTAs expression and progression-free survival (PFS) was assessed.
View Article and Find Full Text PDFMol Ther
January 2025
Brown Center for Immunotherapy. Indiana University School of Medicine. 975 W. Walnut St., IB554A, Indianapolis, IN 46202. Electronic address:
Chimeric Antigen Receptor (CAR) T cell therapy has revolutionized cancer treatment and is now being explored for other diseases, such as autoimmune disorders. While the tumor microenvironment (TME) in cancer is often immunosuppressive, in autoimmune diseases, the environment is typically inflammatory. Both environments can negatively impact CAR T cell survival: the former through direct suppression, hypoxia, and nutrient deprivation, and the latter through chronic T cell receptor (TCR) engagement, risking exhaustion.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.
View Article and Find Full Text PDFJ Ovarian Res
January 2025
Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, #128 Shenyang Road, Shanghai, 200090, People's Republic of China.
Background: Ovarian cancers (OC) and cervical cancers (CC) have poor survival rates. Tumor-infiltrating lymphocytes (TILs) play a pivotal role in prognosis, but shared immune mechanisms remain elusive.
Methods: We integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to explore immune regulation in OC and CC, focusing on the PI3K/AKT pathway and FLT3 as key modulators.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!