Impaired fetal development is associated with a number of adult chronic diseases and it is believed that these associations arise as a result of the phenomenon of prenatal programming, which involves persisting changes in structure and function of various body organs caused by ambient factors during critical and vulnerable periods of early development. The main goal of the study was to assess the association between lung function in early childhood and prenatal exposure to fine particulate matter (PM(2.5)), which represents a wide range of chemical compounds potentially hazardous for fetal development. Among pregnant women recruited prenatally to the study, personal measurements of PM(2.5) were performed over 48 h in the second trimester of pregnancy. After delivery, infants were followed for 5 years; the interviewers visited participants in their homes to record children's respiratory symptoms every 3 months in the child's first 2 years of life and every 6 months thereafter. In the fifth year of the follow-up, children were invited for standard lung function testing of levels of forced vital capacity (FVC), forced expiratory volume in 1 s (FEV(1)) and forced expiratory volume in 0.5 s (FEV(0.5)). There were 176 children of non-smoking mothers, who performed at least two acceptable spirometry measurements. Multivariable linear regression showed a significant deficit of FVC at the highest quartile of PM(2.5) exposure (beta coefficient = -91.9, P = 0.008), after adjustment for covariates (age, gender, birthweight, height and wheezing). Also FEV(1) level in children was inversely correlated with prenatal exposure to PM(2.5), and the average FEV(1) deficit amounted to 87.7 mL (P = 0.008) at the higher level of exposure. Although the effect of PM(2.5) exposure on FEV(0.5) was proportionally weaker (-72.7, P = 0.026), it was also statistically significant. The lung function level was inversely and significantly associated with the wheezing recorded over the follow-up. The findings showed that significant lung function deficits in early childhood are associated with prenatal exposure to fine particulate matter, which may affect fetal lung growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761386PMC
http://dx.doi.org/10.1111/j.1365-3016.2010.01136.xDOI Listing

Publication Analysis

Top Keywords

lung function
20
prenatal exposure
16
exposure fine
12
fine particulate
12
particulate matter
12
children non-smoking
8
non-smoking mothers
8
fetal development
8
early childhood
8
forced expiratory
8

Similar Publications

Introduction: The purpose of this study was to evaluate the association between body composition, overall survival, odds of receiving treatment, and patient-reported outcomes (PROs) in individuals living with metastatic non-small-cell lung cancer (mNSCLC).

Methods: This retrospective analysis was conducted in newly diagnosed patients with mNSCLC who had computed-tomography (CT) scans and completed PRO questionnaires close to metastatic diagnosis date. Cox proportional hazard models and logistic regression evaluated overall survival and odds of receiving treatment, respectively.

View Article and Find Full Text PDF

[Purpose] The safety and physiological effects of combined training with breathing resistance and sustained physical exertion in middle-aged and older adults remain unclear. This pilot study investigated the safety and physiological benefits of this training method in older adults. [Participants and Methods] Participants aged 55-75 without respiratory, circulatory, or metabolic diseases were randomly divided into two groups: a combined breathing and physical training group and a control group.

View Article and Find Full Text PDF

[Purpose] Rehabilitation can improve physical function and quality of life in patients with advanced cancer. However, relevant studies on advanced lung cancers are limited. Differences in physical function and symptoms based on the treatment phase should be considered.

View Article and Find Full Text PDF

Artificial intelligence in respiratory care.

Front Digit Health

December 2024

Faculty of Engineering and Computing, Liwa College, Abu Dhabi, United Arab Emirates.

The evolution of artificial intelligence (AI) has revolutionised numerous aspects of our daily lives, with profound implications across various sectors, including healthcare. Although the concept of AI in healthcare was introduced in the early 1970s, the integration of this technology in healthcare is still in the evolution phase. Despite barriers, the current decade is witnessing an increased utility of AI into diverse specialities of the medical field to enhance precision medicine, predict diagnosis, therapeutic results, and prognosis; this includes respiratory medicine, critical care, and in their allied specialties.

View Article and Find Full Text PDF

An overview of proactive monitoring and management of respiratory issues in ataxia-telangiectasia in a specialist and shared care pediatric clinic.

Front Pediatr

December 2024

Paediatrics and Paediatric Respirology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom.

Ataxia-telangiectasia (A-T) is an ultrarare autosomal recessive disorder and occurs in all racial and ethnic backgrounds. Clinically, children and young people with A-T are affected by sinopulmonary infections, neurological deterioration with concomitant bulbar dysfunction, increased sensitivity to ionizing radiation, immunodeficiency, a decline in lung function, chronic liver disease, endocrine abnormalities, cutaneous and deep-organ granulomatosis, and early death. Pulmonary complications become more frequent in the second decade of life and are a leading cause of death in individuals with A-T.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!