RP2 is a ubiquitously expressed protein encoded by a gene associated with X-linked retinitis pigmentosa (XLRP), a retinal degenerative disease that causes severe vision loss. Previous in vitro studies have shown that RP2 binds to ADP ribosylation factor-like 3 (Arl3) and activates its intrinsic GTPase activity, but the function of RP2 in the retina, and in particular photoreceptor cells, remains unclear. To begin to define the role of RP2 in the retina and XLRP, we have conducted biochemical studies to identify proteins in retinal cell extracts that interact with RP2. Here, we show that RP2 interacts with N-ethylmaleimide sensitive factor (NSF) in retinal cells as well as cultured embryonic kidney (HEK293) cells by mass spectrometry-based proteomics and biochemical analysis. This interaction is mediated by the N-terminal domain of NSF. The E138G and DeltaI137 mutations of RP2 known to cause XLRP abolished the interaction of RP2 with the N-terminal domain of NSF. Immunofluorescence labeling studies further showed that RP2 colocalized with NSF in photoreceptors and other cells of the retina. Intense punctate staining of RP2 was observed close to the junction between the inner and outer segments beneath the connecting cilium, as well as within the synaptic region of rod and cone photoreceptors. Our studies indicate that RP2, in addition to serving as a regulator of Arl3, interacts with NSF, and this complex may play an important role in membrane protein trafficking in photoreceptors and other cells of the retina.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2942077 | PMC |
http://dx.doi.org/10.1021/bi1005249 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China. Electronic address:
Total volatile base nitrogen (TVB-N) is an important indicator for evaluating the freshness of aquatic products and holds great significance in assessing food safety. Traditional testing methods for TVB-N content use the Kjeldahl method, which has shortcomings like lengthy processes, cumbersome steps, and sample destruction. This study innovatively couples the hyperspectral imaging (HSI) technique with an odor imaging sensor (OIS) to achieve non-destructive prediction of TVB-N content in the large yellow croaker.
View Article and Find Full Text PDFJ Fungi (Basel)
November 2024
School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
species are known to produce various secondary metabolites with polyketide structures, including Monacolins, pigments, and citrinin. This study investigates the effects of 5-azacytidine on M1 and RP2. The dry weight, red, yellow, and orange pigment values, and Monacolin K yield of both strains were measured, and their hyphae observed through electron microscopy.
View Article and Find Full Text PDFJ Med Virol
December 2024
Clinical Virology, University Hospital Basel, Basel, Switzerland.
Syndromic multiplex panel testing enables simultaneous detection of multiple respiratory pathogens, but limited data is available on the comparative diagnostic performance of different testing systems. In this multicenter prospective study, we aimed to compare the QIAstat-Dx Respiratory Panel 2.0 (QIAstat-Dx-RP2.
View Article and Find Full Text PDFFoods
November 2024
Hangzhou Jingle Tea Foundation, Hangzhou 310000, China.
The quality and flavor of tea leaves are significantly influenced by chemical composition, with the content of free amino acids serving as a key indicator for assessing the quality of Tencha. Accurately and quickly measuring free amino acids during tea processing is crucial for monitoring and optimizing production processes. However, traditional chemical analysis methods are often time-consuming and costly, limiting their application in real-time quality control.
View Article and Find Full Text PDFFoods
November 2024
School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China.
Due to the structural diversity of flavonoids in functional plant foods and the inherent limitations of existing techniques, it is important to develop a simple and green (environmentally friendly) method of extracting flavonoids from plant foods. In this study, a method involving solvent extraction followed by automated solid-phase extraction was developed for extracting flavonoids from flos (JYH) and (SYH), both of which are widely used functional plant-based foods in Asian countries. For the optimisation of the solvent extraction method, solvent concentration (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!