Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/art.27679 | DOI Listing |
Background: There is an urgent need for new therapeutic and diagnostic targets for Alzheimer's disease (AD). Dementia afflicts roughly 55 million individuals worldwide, and the prevalence is increasing with longer lifespans and the absence of preventive therapies. Given the demonstrated heterogeneity of Alzheimer's disease in biological and genetic components, it is critical to identify new therapeutic approaches.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Case Western Reserve University, Cleveland, OH, USA.
Background: Traumatic Brain Injury (TBI) is one of the most common nonheritable causes of Alzheimer's disease (AD). However, there is lack of effective treatment for both AD and TBI. We posit that network-based integration of multi-omics and endophenotype disease module coupled with large real-world patient data analysis of electronic health records (EHR) can help identify repurposable drug candidates for the treatment of TBI and AD.
View Article and Find Full Text PDFBackground: TREM2 is a lipid-sensing receptor expressed by microglial sub-populations within neuropathological microenvironments, whose downstream signaling promotes microglial survival, plasticity, and migration. Multiple loss-of-function variants strongly implicate TREM2 as a key regulator of Alzheimer's disease (AD) risk. Accordingly, TREM2 antibodies are currently in development to evaluate the therapeutic potential of TREM2 agonism in neurodegenerative diseases.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Icahn School Of Medicine at Mount Sinai, New York, NY, USA.
Background: Despite increasing knowledge of the etiology of neurodegenerative diseases, translation of these benefits into therapeutic advances for Alzheimer's Disease and related diseases (ADRD) has been slow. Drug repurposing is a promising strategy for identifying new uses for approved drugs beyond their initial indications. We developed a high-throughput drug screening platform aimed at identifying drugs capable of reducing proteotoxicity in vivo (Aß toxicity in Caenorhabditis elegans) AND inhibiting microglial inflammation (TNF-alpha IL-6), both implicated in driving AD(figure attached with sample of results in C.
View Article and Find Full Text PDFBackground: TREM2 is a lipid-sensing receptor expressed by microglial sub-populations within neuropathological microenvironments, whose downstream signaling promotes microglial survival, plasticity, and migration. Multiple loss-of-function variants strongly implicate TREM2 as a key regulator of Alzheimer's disease (AD) risk. Accordingly, TREM2 antibodies are currently in development to evaluate the therapeutic potential of TREM2 agonism in neurodegenerative diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!