Patterns of responding differentiate intravenous nicotine self-administration from responding for a visual stimulus in C57BL/6J mice.

Psychopharmacology (Berl)

Department of Psychiatry, Mail Code 0603, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0603, USA.

Published: October 2010

Rationale: Testing genetically engineered mice in a reliable nicotine self-administration procedure could provide important insights into the molecular mechanisms underlying nicotine reinforcement.

Objectives: We assessed operant responding for intravenous nicotine infusions in C57BL/6J male mice under a fixed-ratio 3 schedule of reinforcement in which a visual cue was contingently associated with drug delivery.

Methods/results: Acquisition, dose-response function, extinction, and cue-induced reinstatement of operant behavior were characterized. Low nicotine doses (0.001-0.06 mg/kg/infusion) elicited response rates similar to those supported by saline, whereas a higher dose (0.1 mg/kg/infusion) decreased responding. Using an identical procedure to assess cocaine self-administration in an independent group of mice yielded an inverted U-shaped dose-response curve. Other mice trained to respond exclusively for the visual stimulus earned a similar number of reinforcers as mice self-administering saline or low nicotine doses, although with a lower selectivity for the active lever and their response rates were sensitive to the discontinuation and resumption of cue light presentation. Finally, patterns of responding for nicotine, cocaine, or the visual stimulus alone were analyzed using frequency distributions of inter-response intervals and extended return maps. These analyses revealed unique properties of nicotine, which dose-dependently delayed the first response post-timeout and increased the regularity of lever pressing activity.

Conclusions: Nicotine did not enhance the reinforcing properties of the visual cue paired with drug delivery. Interestingly, however, patterns of responding could differentiate nicotine self-administration from responding for a visual stimulus or saline and indicated that nicotine functioned as a salient stimulus driving highly regular operant behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2952765PMC
http://dx.doi.org/10.1007/s00213-010-1950-4DOI Listing

Publication Analysis

Top Keywords

visual stimulus
16
patterns responding
12
nicotine self-administration
12
nicotine
11
responding differentiate
8
intravenous nicotine
8
self-administration responding
8
responding visual
8
visual cue
8
operant behavior
8

Similar Publications

Functional magnetic resonance imaging (fMRI) has dramatically advanced non-invasive human brain mapping and decoding. Functional near-infrared spectroscopy (fNIRS) and high-density diffuse optical tomography (HD-DOT) non-invasively measure blood oxygen fluctuations related to brain activity, like fMRI, at the brain surface, using more-lightweight equipment that circumvents ergonomic and logistical limitations of fMRI. HD-DOT grids have smaller inter-optode spacing (~ 13 mm) than sparse fNIRS (~ 30 mm) and therefore provide higher image quality, with spatial resolution ~ 1/2 that of fMRI, when using the several source-detector distances (13-40 mm) afforded by the HD-DOT grid.

View Article and Find Full Text PDF

An optogenetic mouse model of hindlimb spasticity after spinal cord injury.

Exp Neurol

January 2025

Brain and Mind Research Institute, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada. Electronic address:

Spasticity is a common comorbidity of spinal cord injury (SCI), disrupting motor function and resulting in significant discomfort. While elements of post-SCI spasticity can be assessed using pre-clinical SCI models, the robust measurement of spasticity severity can be difficult due to its periodic and spontaneous appearance. Electrical stimulation of sensory afferents can elicit spasticity-associated motor responses, such as spasms; however, placing surface electrodes on the hindlimbs of awake animals can induce stress or encumbrance that could influence the expression of behaviour.

View Article and Find Full Text PDF

Hyperpolarized-C magnetic resonance imaging (HP-C MRI) was used to image changes in C-lactate signal during a visual stimulus condition in comparison to an eyes-closed control condition. Whole-brain C-pyruvate, C-lactate and C-bicarbonate production was imaged in healthy volunteers (N = 6, ages 24-33) for the two conditions using two separate hyperpolarized C-pyruvate injections. BOLD-fMRI scans were used to delineate regions of functional activation.

View Article and Find Full Text PDF

Gut Colonization of Zebrafish Larvae Induces a Dampened Sensorimotor Response.

Biomedicines

January 2025

Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA.

Cholera is a diarrheal disease prevalent in populations without access to clean water. Cholera is caused by which colonizes the upper small intestine in humans once ingested. A growing number of studies suggest that the gut microbiome composition modulates animal behavior.

View Article and Find Full Text PDF

Objects project different images when viewed from varying locations, but the visual system can correct perspective distortions and identify objects across viewpoints. This study investigated the conditions under which the visual system allocates computational resources to construct view-invariant, extraretinal representations, focusing on planar symmetry. When a symmetrical pattern lies on a plane, its symmetry in the retinal image is degraded by perspective.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!