Plasmodium falciparum FIKK kinase members target distinct components of the erythrocyte membrane.

PLoS One

Unité de Biologie des Interactions Hôte-Parasite, CNRS UR2581-Institut Pasteur, Paris, France.

Published: July 2010

Background: Modulation of infected host cells by intracellular pathogens is a prerequisite for successful establishment of infection. In the human malaria parasite Plasmodium falciparum, potential candidates for erythrocyte remodelling include the apicomplexan-specific FIKK kinase family (20 members), several of which have been demonstrated to be transported into the erythrocyte cytoplasm via Maurer's clefts.

Methodology: In the current work, we have knocked out two members of this gene family (Pf fikk7.1 and Pf fikk12), whose products are localized at the inner face of the erythrocyte membrane. Both mutant parasite lines were viable and erythrocytes infected with these parasites showed no detectable alteration in their ability to adhere in vitro to endothelial receptors such as chondroitin sulfate A and CD36. However, we observed sizeable decreases in the rigidity of infected erythrocytes in both knockout lines. Mutant parasites were further analyzed using a phospho-proteomic approach, which revealed distinct phosphorylation profiles in ghost preparations of infected erythrocytes. Knockout parasites showed a significant reduction in the level of phosphorylation of a protein of approximately 80 kDa for FIKK12-KO in trophozoite stage and a large protein of about 300 kDa for FIKK7.1-KO in schizont stage.

Conclusions: Our results suggest that FIKK members phosphorylate different membrane skeleton proteins of the infected erythrocyte in a stage-specific manner, inducing alterations in the mechanical properties of the parasite-infected red blood cell. This suggests that these host cell modifications may contribute to the parasites' survival in the circulation of the human host.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2909202PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0011747PLOS

Publication Analysis

Top Keywords

plasmodium falciparum
8
fikk kinase
8
erythrocyte membrane
8
infected erythrocytes
8
erythrocytes knockout
8
erythrocyte
5
infected
5
falciparum fikk
4
members
4
kinase members
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!