Phenothiazines have their primary effects on the plasma membrane of prokaryotes and eukaryotes. Among the components of the prokaryotic plasma membrane affected are efflux pumps, their energy sources, energy providing enzymes such as ATPases, and genes that regulate and code for permeability aspects of the bacterium. The responses of multi-drug (MDR) and extensively drug resistant (XDR) Mycobacterium tuberculosis to the neuroleptic phenothiazine thioridazine are reviewed. The information collated suggests that this phenothiazine has the potential to cure XDR and MDR tuberculosis infections, a potential that has been recently demonstrated by its ability to cure 10 patients who presented with XDR TB infections. The mechanism by which this phenothiazine produces the desired effects within the infected macrophage is also discussed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

efflux pumps
8
plasma membrane
8
phenothiazines bacterial
4
bacterial efflux
4
pumps targeting
4
targeting macrophage
4
macrophage enhanced
4
enhanced killing
4
killing intracellular
4
intracellular xdrtb
4

Similar Publications

Efflux pumps that transport antibacterial drugs out of bacterial cells have broad specificity, commonly leading to broad spectrum resistance and limiting treatment strategies for infections. It remains unclear how efflux pumps can maintain this broad spectrum specificity to diverse drug molecules while limiting the efflux of other cytoplasmic content. We have investigated the origins of this broad specificity using theoretical models informed by the experimentally determined structural and kinetic properties of efflux pumps.

View Article and Find Full Text PDF

Following a period of disuse owing to the emergence of multidrug-resistant Gram-negative bacteria, colistin has regained global attention as an antibiotic of last resort. The resurgence in its utilization has led to a concurrent increase in acquired resistance, presenting a significant challenge in clinical treatment. Predominantly, resistance mechanisms involve alterations in the lipid A component of the lipopolysaccharide (LPS) structure.

View Article and Find Full Text PDF

The global dissemination of pathotypes with multidrug-resistant (MDR) and hypervirulent traits poses a threat to public health. The situation in Armenia is unclear, and we performed a comprehensive characterisation of 48 clinical isolates of , collected from 2018 to 2024. The majority of the isolates (64.

View Article and Find Full Text PDF

Efflux Pumps and Porins Enhance Bacterial Tolerance to Phenolic Compounds by Inhibiting Hydroxyl Radical Generation.

Microorganisms

January 2025

State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao 266237, China.

Phenolic compounds are industrially versatile chemicals that have been successfully produced in microbial cell factories. Unfortunately, most phenolic compounds are highly toxic to cells in specific cellular environments or above a particular concentration because they form a complex with iron and promote hydroxyl radical production in Fenton reactions, resulting in the ferroptosis of cells. Here, we demonstrated that overexpression of efflux pumps and porins, including porins LamB and OmpN, and efflux pumps EmrAB, MdtABC, and SrpB, can enhance phloroglucinol (PG) tolerance by inhibiting the generation of hydroxyl radicals.

View Article and Find Full Text PDF

is considered one of the prioritized ESKAPE microorganisms for the research and development of novel treatments by the World Health Organization, especially because of its remarkable persistence and drug resistance. In this review, we describe how this can be acquired by the enzymatic degradation of antibiotics, target site modification, altered membrane permeability, multidrug efflux pumps, and their ability to form biofilms. Also, the evolution of drug resistance in , which is mainly driven by mobile genetic elements, is reported, with particular reference to plasmid-associated resistance, resistance islands, and insertion sequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!