Developmental responses associated with end-of-day far-red light (EOD-FR) signaling were investigated in maize (Zea mays subspecies mays) seedlings. A survey of genetically diverse inbreds of temperate and tropical/semitropical origins, together with teosinte (Zea mays subspecies parviglumis) and a modern hybrid, revealed distinct elongation responses. A mesocotyl elongation response to the EOD-FR treatment was largely absent in the tropical/semitropical lines, but both hybrid and temperate inbred responses were of the same magnitude as in teosinte, suggesting that EOD-FR-mediated mesocotyl responses were not lost during the domestication or breeding process. The genetic architecture underlying seedling responses to EOD-FR was investigated using the intermated B73 x Mo17 mapping population. Among the different quantitative trait loci identified, two were consistently detected for elongation and responsiveness under EOD-FR, but none were associated with known light signaling loci. The central role of phytochromes in mediating EOD-FR responses was shown using a phytochromeB1 phytochromeB2 (phyB1 phyB2) mutant series. Unlike the coleoptile and first leaf sheath, EOD-FR-mediated elongation of the mesocotyl appears predominantly controlled by gibberellin. EOD-FR also reduced abscisic acid (ABA) levels in the mesocotyl for both the wild type and phyB1 phyB2 double mutants, suggesting a FR-mediated but PHYB-independent control of ABA accumulation. EOD-FR elongation responses were attenuated in both the wild type and phyB1 phyB2 double mutants when a chilling stress was applied during the dark period, concomitant with an increase in ABA levels. We present a model for the EOD-FR response that integrates light and hormonal control of seedling elongation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938140 | PMC |
http://dx.doi.org/10.1104/pp.110.159830 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!