The HPIV2 V protein inhibits type I interferon (IFN) induction and signaling. To manipulate the V protein, whose coding sequence overlaps that of the polymerase-associated phosphoprotein (P), without altering the P protein, we generated an HPIV2 virus in which P and V are expressed from separate genes (rHPIV2-P+V). rHPIV2-P+V replicated like HPIV2-WT in vitro and in non-human primates. HPIV2-P+V was modified by introducing two separate mutations into the V protein to create rHPIV2-L101E/L102E and rHPIV2-Delta122-127. In contrast to HPIV2-WT, both mutant viruses were unable to degrade STAT2, leaving virus-infected cells susceptible to IFN. Neither mutant, nor HPIV2-WT, induced significant amounts of IFN-beta in infected cells. Surprisingly, neither rHPIV2-L101E/L102E nor rHPIV2-Delta122-127 was attenuated in two species of non-human primates. This indicates that loss of HPIV2's ability to inhibit IFN signaling is insufficient to attenuate virus replication in vivo as long as IFN induction is still inhibited.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2932766 | PMC |
http://dx.doi.org/10.1016/j.virol.2010.07.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!