A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Size-selective uptake of colloidal low density lipoprotein aggregates by cultured white blood cells. | LitMetric

Size-selective uptake of colloidal low density lipoprotein aggregates by cultured white blood cells.

J Colloid Interface Sci

Drexel University, Department of Chemical and Biological Engineering, 3141 Chestnut Street, Philadelphia, PA 19104, USA.

Published: October 2010

This paper illustrates how principles of colloid science are useful in studying atherosclerosis. Accumulation of foam cells in the arterial intima is a key step in atherogenesis. The extent of foam cell formation is enhanced by low density lipoprotein (LDL) aggregates, and we have previously shown that the size of sphingomyelinase (Smase)-hydrolysis-induced aggregates depends directly on the concentration of ceramide generated in the LDL phospholipid monolayer, mediated by the hydrophobic effect. Here, we focus on the effect of LDL aggregate particle sizes on their subsequent uptake by macrophages. Our data show the first direct measurement of uptake as a function of aggregate size and the first direct comparison of uptake after Smase-catalyzed and vortex-mixing-mediated aggregation. Vortex-mixed aggregates with radii 20-77 nm showed maximal uptake approximately 118 microg sterol/mg protein at a 53 nm intermediate size, consistent with a mathematical model describing competition between aggregate surface area and volume. Smase-treated aggregates with radii 25-211 nm also showed maximal uptake at an intermediate size, approximately 58 microg sterol/mg protein for 132 nm particles, and fit a modified model that incorporated ceramide concentration expressed as aggregate size. This study shows that particle size is significant and composition may also be a factor in LDL uptake.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3719865PMC
http://dx.doi.org/10.1016/j.jcis.2010.06.059DOI Listing

Publication Analysis

Top Keywords

low density
8
density lipoprotein
8
aggregate size
8
aggregates radii
8
maximal uptake
8
microg sterol/mg
8
sterol/mg protein
8
intermediate size
8
size
6
uptake
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!