Apurinic/apyrimidinic (AP) endonucleases are versatile DNA repair enzymes that possess a variety of nucleolytic activities, including endonuclease activity at AP sites, 3' phosphodiesterase activity that can remove a variety of ligation-blocking lesions from the 3' end of DNA, endonuclease activity on oxidative DNA lesions, and 3' to 5' exonuclease activity. There are two families of AP endonucleases, named for the bacterial counterparts endonuclease IV (EndoIV) and exonuclease III (ExoIII). While ExoIII family members are present in all kingdoms of life, EndoIV members exist in lower organisms but are curiously absent in plants, mammals and some other vertebrates. Here, we review recent research on these enzymes, focusing primarily on the EndoIV family. We address the role(s) of EndoIV members in DNA repair and discuss recent findings from each model organism in which the enzymes have been studied to date.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mrrev.2010.07.003 | DOI Listing |
Antioxid Redox Signal
December 2024
Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Parkville, Australia.
Inflammation and oxidative stress play crucial roles in the development and progression of skeletal muscle diseases. This review aims to examine the existing evidence regarding the involvement and inhibition of APE1/Ref-1 (apurinic/apyrimidinic endonuclease 1/redox factor 1) in diseases, then extrapolate this evidence to the context of skeletal muscle and discuss the potential beneficial effects of APE1/Ref-1 inhibition in ameliorating myopathy with a particular focus on dystrophic pathology. Currently, therapeutic interventions targeting pathways, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nuclear factor erythroid 2-related factor 2 (NRF2), have shown limited efficacy in both clinical and preclinical settings.
View Article and Find Full Text PDFChem Res Toxicol
December 2024
University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, Missouri 65211, United States.
Apurinic/apyrimidinic endonuclease 1 (APE1) is a central enzyme in the base excision repair (BER) pathway. APE1 catalyzes incision of the phosphodiester linkage on the 5'-side of apurinic/apyrimidinic (AP) sites during the repair of damaged nucleobases in cellular DNA. Inhibition of this enzyme can potentiate the action of DNA-damaging chemotherapeutic agents.
View Article and Find Full Text PDFBMB Rep
December 2024
Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
Base excision repair (BER) is an essential cellular mechanism that repairs small, non-helix-distorting base lesions in DNA, resulting from oxidative damage, alkylation, deamination, or hydrolysis. This review highlights recent advances in understanding the molecular mechanisms of BER enzymes through single-molecule studies. We discuss the roles of DNA glycosylases in lesion recognition and excision, with a focus on facilitated diffusion mechanisms such as sliding and hopping that enable efficient genome scanning.
View Article and Find Full Text PDFAnal Chem
December 2024
Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Institute of Developmental Biology and Regenerative Medicine, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
Single nucleotide polymorphism (SNP) primarily refers to DNA sequence polymorphism caused by variations in a single nucleotide, which is closely associated with many diseases such as genetic disorders and tumors. However, trace DNA mutants typically exist in a large pool of wild-type DNA, making it challenging to establish accurate and sensitive approaches for SNP detection. Herein, we developed an advanced ligase chain reaction (LCR) strategy to output the circular DNA walker for signal amplification, which realized accuracy and sensitive SNP detection based on the electrochemiluminescent (ECL) platform.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA.
Endogenous DNA damage occurs throughout the cell cycle, with cells responding differently at various stages. The base excision repair (BER) pathway predominantly repairs damaged bases in the genome. While extensively studied in interphase cells, it is unknown if BER operates in mitosis and how apurinic/apyrimidinic (AP) sites, intermediates in the BER pathway that inhibit transcriptional elongation, are processed for post-mitotic gene reactivation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!