Aims: The objective of this study was to access APC-effector cell cluster formation in genetically susceptible BALB/c (H-2(d) ) mice infected with highly virulent Moscow strain of ectromelia virus (ECTV-MOS) and estimate of lymphocyte activation based upon expression of CD62L and CD44 molecules.
Methods And Results: APC-effector cell clusters were obtained by enzymatic digestion from draining lymph nodes (DLNs) and spleens of BALB/c mice. We found that APCs infected with ECTV-MOS form unstable clusters with effector cells, and thus may diminish T-cell activation at the early stage of mousepox. Different types of effector cells including T-cell subsets (CD4(+) and CD8(+) ), B cells and polymorphonuclear cells colocalize within individual clusters. Increase in CD19(+) B cells within APC-effector cell clusters during severe clinical mousepox may reflect B-cell activation.
Conclusions: Our studies indicated vigorous changes in APC-effector cell cluster formation in genetically susceptible BALB/c mice during mousepox (up to 2 weeks). ECTV-MOS can modulate APC interactions with effector cells and consequently may impair T-cell activation probably owing to unstable cluster formation and/or subsequent weak stimulation by infected APCs at the early stages of mousepox.
Significance And Impact Of The Study: This is the first report of APC-effector cell cluster formation in BALB/c mice during mousepox. It gives us a new light on the mutual cell-cell interactions and development of the immune response during ECTV-MOS infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2672.2010.04813.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!