Climate change has altered the environment in which forests grow, and climate change models predict more severe alterations to come. Forests have already responded to these changes, and the future temperature and precipitation scenarios are of foremost concern, especially in the mountainous western United States, where forests occur in the dry environments that interface with grasslands. The objective of this study was to understand the trade-offs between temperature and water controls on these forested sites in the context of available climate projections. Three temperature and precipitation scenarios from IPCC AR4 AOGCMs ranging in precipitation levels were input to the process model Biome-BGC for key forested sites in the northern U.S. Rocky Mountains. Despite the omission of natural and human-caused disturbances in our simulations, our results show consequential effects from these conservative future temperature and precipitation scenarios. According to these projections, if future precipitation and temperatures are similar to or drier than the dry scenario depicted here, high-elevation forests on both the drier and wetter sites, which have in the absence of disturbance accumulated carbon, will reduce their carbon accumulation. Under the marginally drier climate projections, most forests became carbon sources by the end of the simulation horizon (2089). Under all three scenarios, growing season lengthened, the number of days with snow on the ground decreased, peak snow occurred earlier, and water stress increased through the projection horizon (1950-2089) for all sites, which represent the temperature and precipitation spectrum of forests in this region. The quantity, form, and timing of precipitation ultimately drive the carbon accumulation trajectory of forests in this region.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1890/09-0504.1 | DOI Listing |
Ecohealth
January 2025
Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki, 305-8687, Japan.
Anthropogenic disturbances degrade ecosystems, elevating the risk of emerging infectious diseases from wildlife. However, the key environmental factors for preventing tick-borne disease infection in relation to host species, landscape components, and climate conditions remain unknown. This study focuses on identifying crucial environmental factors contributing to the outbreak of severe fever with thrombocytopenia syndrome (SFTS), a tick-borne disease, in Miyazaki Prefecture, southern Japan.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China; State Key Laboratory of Wetland Conservation and Restoration, School of Environment, Beijing Normal University, Beijing, 100875, China; Key Laboratory of Coastal Water Environmental Management and Water Ecological Restoration of Guang-dong Higher Education Institutes, Beijing Normal University, Zhuhai, 519087, China.
Since the Industrial Revolution, anthropogenic activities have substantially increased the input of nitrogen (N) and phosphorus (P) into river watersheds, exacerbated by uncertainties stemming from climate change. This study provided a detailed analysis of N and P inputs within the Dawen River Watershed in China from 2000 to 2021. The Net Anthropogenic Nitrogen Input (NANI) and Net Anthropogenic Phosphorus Input (NAPI) methods were used in study, which aimed to investigate how they respond to various climate change factors.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Key Laboratory of Efficient Forage Production Mode, Ministry of Agriculture and Rural Affair, College of Grassland Science, Shanxi Agricultural University, Jinzhong 030801, China.
Grassland degradation is a serious ecological issue in the farming-pastoral ecotone of northern China. Utilizing native grasses for the restoration of degraded grasslands is an effective technological approach. is a superior indigenous grass species for grassland ecological restoration in northern China.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche (UNIVPM), Via Brecce Bianche 10, 60131 Ancona, Italy.
Water scarcity is an ecological issue affecting over 10% of Europe. It is intensified by rising temperatures, leading to greater evaporation and reduced precipitation. Agriculture has been confirmed as the sector accounting for the highest water consumption globally, and it faces significant challenges relating to drought, impacting crop yields and food security.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Shapotou Desert Research and Experimental Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 320 Donggang West Road, Lanzhou 730000, China.
Turcz. is a winter annual species of the Asteraceae family, distributed in sandy areas of northern China, and is crucial for wind avoidance and sand fixation. To understand the inter- and intra-annual population dynamics of in its cold desert habitats, we conducted long- and short-term demographic studies to investigate the timing of germination, seedling survival, soil seed bank and seed longevity of natural populations on the fringe of the Tengger Desert.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!