Complementary resource use by tree species in a rain forest tree plantation.

Ecol Appl

School of Biological Sciences, University of Queensland, St Lucia, 4072 Queensland, Australia.

Published: July 2010

Mixed-species tree plantations, composed of high-value native rain forest timbers, are potential forestry systems for the subtropics and tropics that can provide ecological and production benefits. Choices of rain forest tree species for mixtures are generally based on the concept that assemblages of fast-growing and light-demanding species are less productive than assemblages of species with different shade tolerances. We examined the hypothesis that mixtures of two fast-growing species compete for resources, while mixtures of shade-tolerant and shade-intolerant species are complementary. Ecophysiological characteristics of young trees were determined and analyzed with a physiology-based canopy model (MAESTRA) to test species interactions. Contrary to predictions, there was evidence for complementary interactions between two fast-growing species with respect to nutrient uptake, nutrient use efficiency, and nutrient cycling. Fast-growing Elaeocarpus angustifolius had maximum demand for soil nutrients in summer, the most efficient internal recycling of N, and low P use efficiency at the leaf and whole-plant level and produced a large amount of nutrient-rich litter. In contrast, fast-growing Grevillea robusta had maximum demand for soil nutrients in spring and highest leaf nutrient use efficiency for N and P and produced low-nutrient litter. Thus, mixtures of fast-growing G. robusta and E. angustifolius or G. robusta and slow-growing, shade-tolerant Castanospermum australe may have similar or even greater productivity than monocultures, as light requirement is just one of several factors affecting performance of mixed-species plantations. We conclude that the knowledge gained here will be useful for designing large-scale experimental mixtures and commercial forestry systems in subtropical Australia and elsewhere.

Download full-text PDF

Source
http://dx.doi.org/10.1890/09-1180.1DOI Listing

Publication Analysis

Top Keywords

rain forest
12
species
8
tree species
8
forest tree
8
forestry systems
8
mixtures fast-growing
8
fast-growing species
8
nutrient efficiency
8
maximum demand
8
demand soil
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!