Spectroscopic analysis can provide valuable insights into morphological and biochemical cellular transformations caused by diseases. However, traditional spectroscopic methods and the corresponding spectral interpretation approaches have been challenged by the complexities of the cell shape, orientation, and internal structure. Here we present an elegant spectral interpretation model that enables accurate quantitative analysis of the UV-visible spectra of red blood cells (RBCs) parasitized by the lethal human malaria parasite, Plasmodium falciparum. The model is based on the modified Mie theory (MMT) approach that incorporates the effects of the nonsphericity and orientation and multilayered cell structure to account for complex composition of the infected RBCs (IRBCs). We determine the structure and composition of the IRBCs and address unresolved matters over the alterations induced by the intraerythrocytic development of P. falciparum. The results indicate deformation and swelling of the IRBCs during the trophozoite stage of P. falciparum that is followed by substantial shrinkage during the schizont stages. We determine that up to 90% depletion of hemoglobin from the RBC cytosol does not lead to a net loss of iron from the infected cells. We quantitatively follow the morphological changes in the parasites during the intraerythrocytic development by applying the interpretation model to the UV-visible spectroscopic measurements of the IRBCs. We expect this method of quantitative spectroscopic characterization of the diseased cells to have practical clinical utility for rapid diagnosis, therapeutic monitoring, and drug susceptibility testing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2010.05.037 | DOI Listing |
Curr Top Med Chem
January 2025
Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
Background: Several chemical studies described the physiological efficacy of 1,4- dihydropyridines (DHPs). DHPs bind to specific sites on the α1 subunit of L-type calcium channels, where they demonstrate a more pronounced inhibition of Ca2+ influx in vascular smooth muscle compared to myocardial tissue. This selective inhibition is the basis for their preferential vasodilatory action on peripheral and coronary arteries, a characteristic that underlies their therapeutic utility in managing hypertension and angina.
View Article and Find Full Text PDFCurr Protein Pept Sci
January 2025
Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi-75270, Pakistan.
Background: Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer with a high recurrence rate. A new therapeutic intervention is urgently needed to combat this lethal subtype. The identification of biomarkers is also crucial for improving outcomes in TNBC.
View Article and Find Full Text PDFJ Perinat Med
January 2025
Tufts Medical Center, Mother Infant Research Institute, Boston, MA, USA.
Objectives: Maternal obesity increases a child's risk of neurodevelopmental impairment. However, little is known about the impact of maternal obesity on fetal brain development.
Methods: We prospectively recruited 20 healthy pregnant women across the range of pre-pregnancy or first-trimester body mass index (BMI) and performed fetal brain magnetic resonance imaging (MRI) of their healthy singleton fetuses.
Objective: The aim of this study was to investigate the role of ferroptosis in the occurrence of postoperative cognitive dysfunction (POCD) using a mouse model and to elucidate whether electroacupuncture (EA) can improve POCD by suppressing ferroptosis via the transferrin receptor 1 (TFR1)-divalent metal transporter 1 (DMT1)-ferroportin (FPN) pathway.
Methods: The experiment involved three groups: the control group, the POCD group and the POCD + EA group. The POCD animal model was established using sevoflurane anesthesia and tibial fracture.
Am J Sports Med
January 2025
Department of Orthopaedics, A. Gemelli University Hospital Foundation IRCCS, Catholic University, Rome, Italy.
Background: Failure, persistent knee instability, and reinjury rates after anterior cruciate ligament (ACL) reconstruction are still concerns. Biomechanical investigations have highlighted the role of the anterolateral ligament (ALL) as a crucial knee stabilizer, and clinical outcomes after combined ACL and ALL reconstruction appear to indicate the success of the procedure.
Purpose: To compare the functional outcomes, return-to-sport (RTS) rate, and complications between combined ACL and ALL reconstruction and isolated ACL reconstruction.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!