The application of nanoscale electrical and biological devices will benefit from the development of nanomanufacturing technologies that are high-throughput, low-cost, and flexible. Utilizing nanomaterials as building blocks and organizing them in a rational way constitutes an attractive approach towards this goal and has been pursued for the past few years. The optical near-field nanoprocessing of nanoparticles for high-throughput nanomanufacturing is reported. The method utilizes fluidically assembled microspheres as a near-field optical confinement structure array for laser-assisted nanosintering and nanoablation of nanoparticles. By taking advantage of the low processing temperature and reduced thermal diffusion in the nanoparticle film, a minimum feature size down to approximately 100 nm is realized. In addition, smaller features (50 nm) are obtained by furnace annealing of laser-sintered nanodots at 400 degrees C. The electrical conductivity of sintered nanolines is also studied. Using nanoline electrodes separated by a submicrometer gap, organic field-effect transistors are subsequently fabricated with oxygen-stable semiconducting polymer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201000345 | DOI Listing |
Nanophotonics
January 2025
Departments of Optics and General Physics, Francisk Skorina Gomel State University, Sovetskaya Str. 104, Gomel 246019, Belarus.
Optical vortex beams carrying orbit angular momentum have attracted significant attention recently. Perfect vortex beams, characterized by their topological charge-independent intensity profile, have important applications in enhancing communication capacity and optimizing particle manipulation. In this paper, metal-insulator-metal copper-coin type reflective metasurfaces are proposed to generate perfect composite vortex beams in X-band.
View Article and Find Full Text PDFNat Commun
January 2025
School of Engineering Sciences, KTH Royal Institute of Technology, Applied Physics, AlbaNova, SE-106 91, Stockholm, Sweden.
Surface plasmons offer a promising avenue in the pursuit of swift and localized manipulation of magnetism for advanced magnetic storage and information processing technology. However, observing and understanding spatiotemporal interactions between surface plasmons and spins remains challenging, hindering optimal optical control of magnetism. Here, we demonstrate the spatiotemporal observation of patterned ultrafast demagnetization dynamics in permalloy mediated by propagating surface plasmon polaritons with sub-picosecond time- and sub-μm spatial- scales by employing Lorentz ultrafast electron microscopy combined with excitation through transient optical gratings.
View Article and Find Full Text PDFNanotechnology
January 2025
University Lille, CNRS, Centrale Lille, ISEN, University Valenciennes, UMR 8520-IEMN, F-59000 Lille, France.
InSb is a material of choice for infrared as well as spintronic devices but its integration on large lattice mismatched semi-insulating III-V substrates has so far altered its exceptional properties. Here, we investigate the direct growth of InSb on InP(111)substrates with molecular beam epitaxy. Despite the lack of a thick metamorphic buffer layer for accommodation, we show that quasi-continuous thin films can be grown using a very high Sb/In flux ratio.
View Article and Find Full Text PDFThe ability to significantly enhance near-field coupling between light and matter at the nanoscale is crucial for advancing the fields of nanophotonics and nanopolariotonics. However, conventional probes face challenges in achieving optimal light-matter interaction. In this study, we propose a novel, to the best of our knowledge, simulation-based strategy that leverages tip engineering to dramatically amplify the scattering field through tailored double-layer geometries.
View Article and Find Full Text PDFAchiral metasurfaces with near-field optical chirality have attracted great attention in molecular sensing and chiral emission control. Here, the circular dichroism (CD) response of an achiral metasurface induced by spatially selective coupling with polymethyl methacrylate (PMMA) molecules is demonstrated. A designed achiral metasurface with a V-shaped resonator exhibits large optical chirality with a strongly dissymmetric distribution under circular polarization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!