Lights on: a switchable fluorescent biliprotein.

Chembiochem

Max-Planck-Institute for Bioinorganic Chemistry, Stiftstrasse 34-36, 45470 Mülheim, Germany.

Published: August 2010

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.201000302DOI Listing

Publication Analysis

Top Keywords

lights switchable
4
switchable fluorescent
4
fluorescent biliprotein
4
lights
1
fluorescent
1
biliprotein
1

Similar Publications

Electrochromic materials were discovered in the 1960s when scientists observed reversible changes between the light and dark states in WO thin films under different voltages. Since then, researchers have identified various electrochromic material systems, including transition metal oxides, polymer materials, and small molecules. However, the electrochromic phenomenon has rarely been observed in non-metallic elemental substances.

View Article and Find Full Text PDF

Chemically induced dimerization/proximity (CID/CIP) systems controlled by chemical dimerizers (also known as molecular glues) provide valuable means for understanding and manipulating complex, dynamic biological systems. In this study, we present the development of versatile chemo-optogenetic systems utilizing azobenzene-based photoswitchable molecular glues (sMGs) for reversible protein dimerization controlled by visible light. These systems allow multiple cycles of light-induced dimerization, overcoming the limitations of irreversible photolysis in previous systems.

View Article and Find Full Text PDF

Photocatalytic Methanol Dehydrogenation with Switchable Selectivity.

J Am Chem Soc

January 2025

Department of Chemistry, University of California, Berkeley, California 94720, United States.

Switchable selectivity achieved by altering reaction conditions within the same photocatalytic system offers great advantages for sustainable chemical transformations and renewable energy conversion. In this study, we investigate an efficient photocatalytic methanol dehydrogenation with controlled selectivity by varying the concentration of nickel cocatalyst, using zinc indium sulfide nanocrystals as a semiconductor photocatalyst, which enables the production of either formaldehyde or ethylene glycol with high selectivity. Control experiments revealed that formaldehyde is initially generated and can either serve as a terminal product or intermediate in producing ethylene glycol, depending on the nickel concentration in the solution.

View Article and Find Full Text PDF

Electrically Switchable Multi-Stable Topological States Enabled by Surface-Induced Frustration in Nematic Liquid Crystal Cells.

Adv Mater

January 2025

Liquid Crystals and Photonics Group, Department of Electronics and Information Systems, Ghent University, Technologiepark-Zwijnaarde 126, Ghent, 9052, Belgium.

In liquid crystal (LC) cells, the surface patterning directs the self-assembly of the uniaxial building blocks in the bulk, enabling the design of stimuli-response optical devices with various functionalities. The combination of different anchoring patterns at both substrates can lead to surface induced frustration, preventing a purely planar and defect-free configuration. In cells with crossed assembly of rotating anchoring patterns, elastic deformations allow to obtain a defect-free bulk configuration, but an electrical stimulus can induce disclination lines.

View Article and Find Full Text PDF

Flexible Control of Chiral Superconductivity in Optically Driven Nodal Point Superconductors with Antiferromagnetism.

Phys Rev Lett

December 2024

Institute for Structure and Function and Department of Physics and Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 400044, People's Republic of China and Center of Quantum Materials and Devices, Chongqing University, Chongqing 400044, People's Republic of China.

Article Synopsis
  • Recent studies focus on creating hybrid systems of magnets and superconductors that exhibit topological superconductivity.
  • The research demonstrates that using Floquet engineering with antiferromagnetic layers and s-wave superconductors can induce chiral topological superconductivity through light interaction that disrupts time-reversal symmetry.
  • The ability to control these topological phases with elliptically polarized light offers a novel way to manipulate superconducting properties through related changes in valley pairs, making this approach promising for experimental exploration.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!